from datetime import ( datetime, timedelta, ) from importlib import reload import string import sys import numpy as np import pytest from pandas._libs.tslibs import iNaT import pandas.util._test_decorators as td from pandas import ( NA, Categorical, CategoricalDtype, DatetimeTZDtype, Index, Interval, NaT, Series, Timedelta, Timestamp, cut, date_range, ) import pandas._testing as tm class TestAstypeAPI: def test_astype_unitless_dt64_raises(self): # GH#47844 ser = Series(["1970-01-01", "1970-01-01", "1970-01-01"], dtype="datetime64[ns]") df = ser.to_frame() msg = "Casting to unit-less dtype 'datetime64' is not supported" with pytest.raises(TypeError, match=msg): ser.astype(np.datetime64) with pytest.raises(TypeError, match=msg): df.astype(np.datetime64) with pytest.raises(TypeError, match=msg): ser.astype("datetime64") with pytest.raises(TypeError, match=msg): df.astype("datetime64") def test_arg_for_errors_in_astype(self): # see GH#14878 ser = Series([1, 2, 3]) msg = ( r"Expected value of kwarg 'errors' to be one of \['raise', " r"'ignore'\]\. Supplied value is 'False'" ) with pytest.raises(ValueError, match=msg): ser.astype(np.float64, errors=False) ser.astype(np.int8, errors="raise") @pytest.mark.parametrize("dtype_class", [dict, Series]) def test_astype_dict_like(self, dtype_class): # see GH#7271 ser = Series(range(0, 10, 2), name="abc") dt1 = dtype_class({"abc": str}) result = ser.astype(dt1) expected = Series(["0", "2", "4", "6", "8"], name="abc") tm.assert_series_equal(result, expected) dt2 = dtype_class({"abc": "float64"}) result = ser.astype(dt2) expected = Series([0.0, 2.0, 4.0, 6.0, 8.0], dtype="float64", name="abc") tm.assert_series_equal(result, expected) dt3 = dtype_class({"abc": str, "def": str}) msg = ( "Only the Series name can be used for the key in Series dtype " r"mappings\." ) with pytest.raises(KeyError, match=msg): ser.astype(dt3) dt4 = dtype_class({0: str}) with pytest.raises(KeyError, match=msg): ser.astype(dt4) # GH#16717 # if dtypes provided is empty, it should error if dtype_class is Series: dt5 = dtype_class({}, dtype=object) else: dt5 = dtype_class({}) with pytest.raises(KeyError, match=msg): ser.astype(dt5) class TestAstype: def test_astype_mixed_object_to_dt64tz(self): # pre-2.0 this raised ValueError bc of tz mismatch # xref GH#32581 ts = Timestamp("2016-01-04 05:06:07", tz="US/Pacific") ts2 = ts.tz_convert("Asia/Tokyo") ser = Series([ts, ts2], dtype=object) res = ser.astype("datetime64[ns, Europe/Brussels]") expected = Series( [ts.tz_convert("Europe/Brussels"), ts2.tz_convert("Europe/Brussels")], dtype="datetime64[ns, Europe/Brussels]", ) tm.assert_series_equal(res, expected) @pytest.mark.parametrize("dtype", np.typecodes["All"]) def test_astype_empty_constructor_equality(self, dtype): # see GH#15524 if dtype not in ( "S", "V", # poor support (if any) currently "M", "m", # Generic timestamps raise a ValueError. Already tested. ): init_empty = Series([], dtype=dtype) as_type_empty = Series([]).astype(dtype) tm.assert_series_equal(init_empty, as_type_empty) @pytest.mark.parametrize("dtype", [str, np.str_]) @pytest.mark.parametrize( "series", [ Series([string.digits * 10, tm.rands(63), tm.rands(64), tm.rands(1000)]), Series([string.digits * 10, tm.rands(63), tm.rands(64), np.nan, 1.0]), ], ) def test_astype_str_map(self, dtype, series): # see GH#4405 result = series.astype(dtype) expected = series.map(str) tm.assert_series_equal(result, expected) def test_astype_float_to_period(self): result = Series([np.nan]).astype("period[D]") expected = Series([NaT], dtype="period[D]") tm.assert_series_equal(result, expected) def test_astype_no_pandas_dtype(self): # https://github.com/pandas-dev/pandas/pull/24866 ser = Series([1, 2], dtype="int64") # Don't have PandasDtype in the public API, so we use `.array.dtype`, # which is a PandasDtype. result = ser.astype(ser.array.dtype) tm.assert_series_equal(result, ser) @pytest.mark.parametrize("dtype", [np.datetime64, np.timedelta64]) def test_astype_generic_timestamp_no_frequency(self, dtype, request): # see GH#15524, GH#15987 data = [1] ser = Series(data) if np.dtype(dtype).name not in ["timedelta64", "datetime64"]: mark = pytest.mark.xfail(reason="GH#33890 Is assigned ns unit") request.node.add_marker(mark) msg = ( rf"The '{dtype.__name__}' dtype has no unit\. " rf"Please pass in '{dtype.__name__}\[ns\]' instead." ) with pytest.raises(ValueError, match=msg): ser.astype(dtype) def test_astype_dt64_to_str(self): # GH#10442 : testing astype(str) is correct for Series/DatetimeIndex dti = date_range("2012-01-01", periods=3) result = Series(dti).astype(str) expected = Series(["2012-01-01", "2012-01-02", "2012-01-03"], dtype=object) tm.assert_series_equal(result, expected) def test_astype_dt64tz_to_str(self): # GH#10442 : testing astype(str) is correct for Series/DatetimeIndex dti_tz = date_range("2012-01-01", periods=3, tz="US/Eastern") result = Series(dti_tz).astype(str) expected = Series( [ "2012-01-01 00:00:00-05:00", "2012-01-02 00:00:00-05:00", "2012-01-03 00:00:00-05:00", ], dtype=object, ) tm.assert_series_equal(result, expected) def test_astype_datetime(self): ser = Series(iNaT, dtype="M8[ns]", index=range(5)) ser = ser.astype("O") assert ser.dtype == np.object_ ser = Series([datetime(2001, 1, 2, 0, 0)]) ser = ser.astype("O") assert ser.dtype == np.object_ ser = Series([datetime(2001, 1, 2, 0, 0) for i in range(3)]) ser[1] = np.nan assert ser.dtype == "M8[ns]" ser = ser.astype("O") assert ser.dtype == np.object_ def test_astype_datetime64tz(self): ser = Series(date_range("20130101", periods=3, tz="US/Eastern")) # astype result = ser.astype(object) expected = Series(ser.astype(object), dtype=object) tm.assert_series_equal(result, expected) result = Series(ser.values).dt.tz_localize("UTC").dt.tz_convert(ser.dt.tz) tm.assert_series_equal(result, ser) # astype - object, preserves on construction result = Series(ser.astype(object)) expected = ser.astype(object) tm.assert_series_equal(result, expected) # astype - datetime64[ns, tz] msg = "Cannot use .astype to convert from timezone-naive" with pytest.raises(TypeError, match=msg): # dt64->dt64tz astype deprecated Series(ser.values).astype("datetime64[ns, US/Eastern]") with pytest.raises(TypeError, match=msg): # dt64->dt64tz astype deprecated Series(ser.values).astype(ser.dtype) result = ser.astype("datetime64[ns, CET]") expected = Series(date_range("20130101 06:00:00", periods=3, tz="CET")) tm.assert_series_equal(result, expected) def test_astype_str_cast_dt64(self): # see GH#9757 ts = Series([Timestamp("2010-01-04 00:00:00")]) res = ts.astype(str) expected = Series(["2010-01-04"]) tm.assert_series_equal(res, expected) ts = Series([Timestamp("2010-01-04 00:00:00", tz="US/Eastern")]) res = ts.astype(str) expected = Series(["2010-01-04 00:00:00-05:00"]) tm.assert_series_equal(res, expected) def test_astype_str_cast_td64(self): # see GH#9757 td = Series([Timedelta(1, unit="d")]) ser = td.astype(str) expected = Series(["1 days"]) tm.assert_series_equal(ser, expected) def test_dt64_series_astype_object(self): dt64ser = Series(date_range("20130101", periods=3)) result = dt64ser.astype(object) assert isinstance(result.iloc[0], datetime) assert result.dtype == np.object_ def test_td64_series_astype_object(self): tdser = Series(["59 Days", "59 Days", "NaT"], dtype="timedelta64[ns]") result = tdser.astype(object) assert isinstance(result.iloc[0], timedelta) assert result.dtype == np.object_ @pytest.mark.parametrize( "data, dtype", [ (["x", "y", "z"], "string[python]"), pytest.param( ["x", "y", "z"], "string[pyarrow]", marks=td.skip_if_no("pyarrow"), ), (["x", "y", "z"], "category"), (3 * [Timestamp("2020-01-01", tz="UTC")], None), (3 * [Interval(0, 1)], None), ], ) @pytest.mark.parametrize("errors", ["raise", "ignore"]) def test_astype_ignores_errors_for_extension_dtypes(self, data, dtype, errors): # https://github.com/pandas-dev/pandas/issues/35471 ser = Series(data, dtype=dtype) if errors == "ignore": expected = ser result = ser.astype(float, errors="ignore") tm.assert_series_equal(result, expected) else: msg = "(Cannot cast)|(could not convert)" with pytest.raises((ValueError, TypeError), match=msg): ser.astype(float, errors=errors) @pytest.mark.parametrize("dtype", [np.float16, np.float32, np.float64]) def test_astype_from_float_to_str(self, dtype): # https://github.com/pandas-dev/pandas/issues/36451 ser = Series([0.1], dtype=dtype) result = ser.astype(str) expected = Series(["0.1"]) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "value, string_value", [ (None, "None"), (np.nan, "nan"), (NA, ""), ], ) def test_astype_to_str_preserves_na(self, value, string_value): # https://github.com/pandas-dev/pandas/issues/36904 ser = Series(["a", "b", value], dtype=object) result = ser.astype(str) expected = Series(["a", "b", string_value], dtype=object) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("dtype", ["float32", "float64", "int64", "int32"]) def test_astype(self, dtype): ser = Series(np.random.randn(5), name="foo") as_typed = ser.astype(dtype) assert as_typed.dtype == dtype assert as_typed.name == ser.name @pytest.mark.parametrize("value", [np.nan, np.inf]) @pytest.mark.parametrize("dtype", [np.int32, np.int64]) def test_astype_cast_nan_inf_int(self, dtype, value): # gh-14265: check NaN and inf raise error when converting to int msg = "Cannot convert non-finite values \\(NA or inf\\) to integer" ser = Series([value]) with pytest.raises(ValueError, match=msg): ser.astype(dtype) @pytest.mark.parametrize("dtype", [int, np.int8, np.int64]) def test_astype_cast_object_int_fail(self, dtype): arr = Series(["car", "house", "tree", "1"]) msg = r"invalid literal for int\(\) with base 10: 'car'" with pytest.raises(ValueError, match=msg): arr.astype(dtype) def test_astype_float_to_uint_negatives_raise( self, float_numpy_dtype, any_unsigned_int_numpy_dtype ): # GH#45151 We don't cast negative numbers to nonsense values # TODO: same for EA float/uint dtypes, signed integers? arr = np.arange(5).astype(float_numpy_dtype) - 3 # includes negatives ser = Series(arr) msg = "Cannot losslessly cast from .* to .*" with pytest.raises(ValueError, match=msg): ser.astype(any_unsigned_int_numpy_dtype) with pytest.raises(ValueError, match=msg): ser.to_frame().astype(any_unsigned_int_numpy_dtype) with pytest.raises(ValueError, match=msg): # We currently catch and re-raise in Index.astype Index(ser).astype(any_unsigned_int_numpy_dtype) with pytest.raises(ValueError, match=msg): ser.array.astype(any_unsigned_int_numpy_dtype) def test_astype_cast_object_int(self): arr = Series(["1", "2", "3", "4"], dtype=object) result = arr.astype(int) tm.assert_series_equal(result, Series(np.arange(1, 5))) def test_astype_unicode(self): # see GH#7758: A bit of magic is required to set # default encoding to utf-8 digits = string.digits test_series = [ Series([digits * 10, tm.rands(63), tm.rands(64), tm.rands(1000)]), Series(["データーサイエンス、お前はもう死んでいる"]), ] former_encoding = None if sys.getdefaultencoding() == "utf-8": # GH#45326 as of 2.0 Series.astype matches Index.astype by handling # bytes with obj.decode() instead of str(obj) item = "野菜食べないとやばい" ser = Series([item.encode()]) result = ser.astype("unicode") expected = Series([item]) tm.assert_series_equal(result, expected) for ser in test_series: res = ser.astype("unicode") expec = ser.map(str) tm.assert_series_equal(res, expec) # Restore the former encoding if former_encoding is not None and former_encoding != "utf-8": reload(sys) sys.setdefaultencoding(former_encoding) def test_astype_bytes(self): # GH#39474 result = Series(["foo", "bar", "baz"]).astype(bytes) assert result.dtypes == np.dtype("S3") def test_astype_nan_to_bool(self): # GH#43018 ser = Series(np.nan, dtype="object") result = ser.astype("bool") expected = Series(True, dtype="bool") tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "dtype", tm.ALL_INT_EA_DTYPES + tm.FLOAT_EA_DTYPES, ) def test_astype_ea_to_datetimetzdtype(self, dtype): # GH37553 ser = Series([4, 0, 9], dtype=dtype) result = ser.astype(DatetimeTZDtype(tz="US/Pacific")) expected = Series( { 0: Timestamp("1969-12-31 16:00:00.000000004-08:00", tz="US/Pacific"), 1: Timestamp("1969-12-31 16:00:00.000000000-08:00", tz="US/Pacific"), 2: Timestamp("1969-12-31 16:00:00.000000009-08:00", tz="US/Pacific"), } ) tm.assert_series_equal(result, expected) def test_astype_retain_Attrs(self, any_numpy_dtype): # GH#44414 ser = Series([0, 1, 2, 3]) ser.attrs["Location"] = "Michigan" result = ser.astype(any_numpy_dtype).attrs expected = ser.attrs tm.assert_dict_equal(expected, result) class TestAstypeString: @pytest.mark.parametrize( "data, dtype", [ ([True, NA], "boolean"), (["A", NA], "category"), (["2020-10-10", "2020-10-10"], "datetime64[ns]"), (["2020-10-10", "2020-10-10", NaT], "datetime64[ns]"), ( ["2012-01-01 00:00:00-05:00", NaT], "datetime64[ns, US/Eastern]", ), ([1, None], "UInt16"), (["1/1/2021", "2/1/2021"], "period[M]"), (["1/1/2021", "2/1/2021", NaT], "period[M]"), (["1 Day", "59 Days", NaT], "timedelta64[ns]"), # currently no way to parse IntervalArray from a list of strings ], ) def test_astype_string_to_extension_dtype_roundtrip( self, data, dtype, request, nullable_string_dtype ): if dtype == "boolean" or (dtype == "timedelta64[ns]" and NaT in data): mark = pytest.mark.xfail( reason="TODO StringArray.astype() with missing values #GH40566" ) request.node.add_marker(mark) # GH-40351 ser = Series(data, dtype=dtype) # Note: just passing .astype(dtype) fails for dtype="category" # with bc ser.dtype.categories will be object dtype whereas # result.dtype.categories will have string dtype result = ser.astype(nullable_string_dtype).astype(ser.dtype) tm.assert_series_equal(result, ser) class TestAstypeCategorical: def test_astype_categorical_to_other(self): cat = Categorical([f"{i} - {i + 499}" for i in range(0, 10000, 500)]) ser = Series(np.random.RandomState(0).randint(0, 10000, 100)).sort_values() ser = cut(ser, range(0, 10500, 500), right=False, labels=cat) expected = ser tm.assert_series_equal(ser.astype("category"), expected) tm.assert_series_equal(ser.astype(CategoricalDtype()), expected) msg = r"Cannot cast object dtype to float64" with pytest.raises(ValueError, match=msg): ser.astype("float64") cat = Series(Categorical(["a", "b", "b", "a", "a", "c", "c", "c"])) exp = Series(["a", "b", "b", "a", "a", "c", "c", "c"]) tm.assert_series_equal(cat.astype("str"), exp) s2 = Series(Categorical(["1", "2", "3", "4"])) exp2 = Series([1, 2, 3, 4]).astype("int") tm.assert_series_equal(s2.astype("int"), exp2) # object don't sort correctly, so just compare that we have the same # values def cmp(a, b): tm.assert_almost_equal(np.sort(np.unique(a)), np.sort(np.unique(b))) expected = Series(np.array(ser.values), name="value_group") cmp(ser.astype("object"), expected) cmp(ser.astype(np.object_), expected) # array conversion tm.assert_almost_equal(np.array(ser), np.array(ser.values)) tm.assert_series_equal(ser.astype("category"), ser) tm.assert_series_equal(ser.astype(CategoricalDtype()), ser) roundtrip_expected = ser.cat.set_categories( ser.cat.categories.sort_values() ).cat.remove_unused_categories() result = ser.astype("object").astype("category") tm.assert_series_equal(result, roundtrip_expected) result = ser.astype("object").astype(CategoricalDtype()) tm.assert_series_equal(result, roundtrip_expected) def test_astype_categorical_invalid_conversions(self): # invalid conversion (these are NOT a dtype) cat = Categorical([f"{i} - {i + 499}" for i in range(0, 10000, 500)]) ser = Series(np.random.randint(0, 10000, 100)).sort_values() ser = cut(ser, range(0, 10500, 500), right=False, labels=cat) msg = ( "dtype '' " "not understood" ) with pytest.raises(TypeError, match=msg): ser.astype(Categorical) with pytest.raises(TypeError, match=msg): ser.astype("object").astype(Categorical) def test_astype_categoricaldtype(self): ser = Series(["a", "b", "a"]) result = ser.astype(CategoricalDtype(["a", "b"], ordered=True)) expected = Series(Categorical(["a", "b", "a"], ordered=True)) tm.assert_series_equal(result, expected) result = ser.astype(CategoricalDtype(["a", "b"], ordered=False)) expected = Series(Categorical(["a", "b", "a"], ordered=False)) tm.assert_series_equal(result, expected) result = ser.astype(CategoricalDtype(["a", "b", "c"], ordered=False)) expected = Series( Categorical(["a", "b", "a"], categories=["a", "b", "c"], ordered=False) ) tm.assert_series_equal(result, expected) tm.assert_index_equal(result.cat.categories, Index(["a", "b", "c"])) @pytest.mark.parametrize("name", [None, "foo"]) @pytest.mark.parametrize("dtype_ordered", [True, False]) @pytest.mark.parametrize("series_ordered", [True, False]) def test_astype_categorical_to_categorical( self, name, dtype_ordered, series_ordered ): # GH#10696, GH#18593 s_data = list("abcaacbab") s_dtype = CategoricalDtype(list("bac"), ordered=series_ordered) ser = Series(s_data, dtype=s_dtype, name=name) # unspecified categories dtype = CategoricalDtype(ordered=dtype_ordered) result = ser.astype(dtype) exp_dtype = CategoricalDtype(s_dtype.categories, dtype_ordered) expected = Series(s_data, name=name, dtype=exp_dtype) tm.assert_series_equal(result, expected) # different categories dtype = CategoricalDtype(list("adc"), dtype_ordered) result = ser.astype(dtype) expected = Series(s_data, name=name, dtype=dtype) tm.assert_series_equal(result, expected) if dtype_ordered is False: # not specifying ordered, so only test once expected = ser result = ser.astype("category") tm.assert_series_equal(result, expected) def test_astype_bool_missing_to_categorical(self): # GH-19182 ser = Series([True, False, np.nan]) assert ser.dtypes == np.object_ result = ser.astype(CategoricalDtype(categories=[True, False])) expected = Series(Categorical([True, False, np.nan], categories=[True, False])) tm.assert_series_equal(result, expected) def test_astype_categories_raises(self): # deprecated GH#17636, removed in GH#27141 ser = Series(["a", "b", "a"]) with pytest.raises(TypeError, match="got an unexpected"): ser.astype("category", categories=["a", "b"], ordered=True) @pytest.mark.parametrize("items", [["a", "b", "c", "a"], [1, 2, 3, 1]]) def test_astype_from_categorical(self, items): ser = Series(items) exp = Series(Categorical(items)) res = ser.astype("category") tm.assert_series_equal(res, exp) def test_astype_from_categorical_with_keywords(self): # with keywords lst = ["a", "b", "c", "a"] ser = Series(lst) exp = Series(Categorical(lst, ordered=True)) res = ser.astype(CategoricalDtype(None, ordered=True)) tm.assert_series_equal(res, exp) exp = Series(Categorical(lst, categories=list("abcdef"), ordered=True)) res = ser.astype(CategoricalDtype(list("abcdef"), ordered=True)) tm.assert_series_equal(res, exp) def test_astype_timedelta64_with_np_nan(self): # GH45798 result = Series([Timedelta(1), np.nan], dtype="timedelta64[ns]") expected = Series([Timedelta(1), NaT], dtype="timedelta64[ns]") tm.assert_series_equal(result, expected)