riku
2025-11-05 ba7065fdcf6fe48d002908a1a7666a480e805021
src/views/historymode/component/MissionReport.vue
@@ -14,6 +14,21 @@
        ></OptionLocation2>
      </el-form-item>
      <OptionTime v-model="formObj.timeArray"></OptionTime>
      <el-form-item label="区县筛选" prop="removeOtherDistrict">
        <el-checkbox v-model="formObj.removeOtherDistrict"
          >移除其他区县</el-checkbox
        >
      </el-form-item>
      <el-form-item label="污染源筛选" prop="removeNoPollutedSource">
        <el-checkbox v-model="formObj.removeNoPollutedSource"
          >移除未发现污染源的线索</el-checkbox
        >
      </el-form-item>
      <el-form-item label="隐患区域" prop="showPollutedArea">
        <el-checkbox v-model="formObj.showPollutedArea"
          >将典型隐患区域表格作为附件展示</el-checkbox
        >
      </el-form-item>
      <el-form-item>
        <el-button
          type="primary"
@@ -23,18 +38,18 @@
        >
          下载报告
        </el-button>
        <el-button
        <!-- <el-button
          type="primary"
          class="el-button-custom"
          @click="handleGenerateImg"
          :loading="docLoading"
        >
          生成图片
        </el-button>
        </el-button> -->
      </el-form-item>
      <el-form-item>
      <!-- <el-form-item>
        <el-image :src="base64Url" fit="fill" :preview-src-list="[base64Url]" />
      </el-form-item>
      </el-form-item> -->
      <el-form-item>
        <el-button
          type="primary"
@@ -72,6 +87,8 @@
import chartMapAmap from '@/utils/chart/chart-map-amap';
import { Legend } from '@/model/Legend';
import { getHexColor, getColorBetweenTwoColors } from '@/utils/color';
import { getGridDataDetailFactorValue } from '@/model/GridDataDetail';
import { factorName } from '@/constant/factor-name';
// 借用卫星遥测模块中的100米网格
const props = defineProps({
@@ -82,7 +99,7 @@
});
const formObj = ref({
  timeArray: [new Date('2025-07-01T00:00:00'), new Date('2025-08-31T23:59:59')],
  timeArray: [new Date('2025-07-01T00:00:00'), new Date('2025-09-30T23:59:59')],
  location: {}
});
@@ -106,7 +123,10 @@
      cityName: formObj.value.location.cName,
      districtCode: formObj.value.location.dCode,
      districtName: formObj.value.location.dName
    }
    },
    removeOtherDistrict: formObj.value.removeOtherDistrict,
    removeNoPollutedSource: formObj.value.removeNoPollutedSource,
    factorTypes: radioOptions(TYPE0).map((e) => e.name)
  };
});
@@ -121,6 +141,7 @@
  srySceneCount: 5,
  sryProbByFactor:
    '颗粒物(PM)相关X处,占比 %,主要涉及工地扬尘污染问题、道路扬尘污染问题等;VOC相关X处,占比 %,主要涉及加油站油气泄露、餐饮油烟污染等',
  sryFocusRegion: '聚焦区域',
  missionInfoList: [
    {
      missionCode: '',
@@ -129,16 +150,20 @@
      _airQulity: 'AQI:30(优)',
      mainFactor: '',
      _abnormalFactors: '',
      sceneCount: 0
      sceneCount: 0,
      _kilometres: '1000',
      _keyScene: '1个国控点(静安监测站)和2个市控点(和田中学、市北高新)',
      exceptionCount: 0,
      _focusScene: ''
    }
  ],
  missionDetailList: [
    {
      _index: 1,
      missionCode: '',
      _startTime: '2025年07月29日',
      _time: '09:00至14:30',
      _kilometres: '1000',
      _keyScene: '1个国控点(静安监测站)和2个市控点(和田中学、市北高新)',
      _dataStatistics: [
        {
          factor: 'PM10',
@@ -147,6 +172,7 @@
          avgValue: 38
        }
      ],
      _airQulity: 'AQI:30(优)',
      aqi: 30,
      pollutionDegree: '优'
    }
@@ -172,6 +198,44 @@
            }
          ]
        }
      ],
      clueList: [
        {
          _factorNames: 'PM2.5',
          _time: '10:22:28 - 10:22:34',
          _riskRegion: '长宁区清溪路可乐东路',
          _exceptionType: '快速上升',
          _chart: '',
          _conclusion:
            '在10:22:28至10:22:34之间,出现快速上升,VOC最低值为135.95μg/m³,最高值为135.95μg/m³,均值为135.95μg/m³,发现3个风险源,包含2个加油站,1个汽修。',
          _scenes:
            '1.上海依德汽车维修有限公司,汽修企业,位于上海市长宁区北虹路1079号,距仙霞站1887米。\r\n……'
        }
      ]
    }
  ],
  gridFusionByAQIList: [
    {
      pollutionDegree: '优',
      _areaDes: '走航区域大小',
      _gridDes: '100米正方形网格',
      _missionDes: '20250729、20250730两次',
      highRiskGridList: [
        {
          index: 1,
          factor: 'PM2.5',
          // 标准色网格图
          gridImgUrl1: '',
          // 对比色网格图
          gridImgUrl2: '',
          factorValue: 20,
          // 四至范围,顺序为最小经度,最大经度,最小纬度,最大纬度
          bounds: [121.4945, 121.4955, 31.2304, 31.2314],
          _boundsDes: '四至范围',
          // 涉及街镇
          town: '',
          _scenesDes: '涉及的污染场景'
        }
      ]
    }
  ]
@@ -183,7 +247,9 @@
    generateMissionList(params.value).then(() => {
      generateMissionDetail(params.value).then(() => {
        generateClueByRiskArea(params.value).then(() => {
          generateDocx();
          generateGridFusion(params.value).then(() => {
            generateDocx();
          });
        });
      });
    });
@@ -191,7 +257,9 @@
};
const handleGenerateImg = () => {
  generateClueByRiskArea(params.value).then(() => {});
  generateClueByRiskArea(params.value).then(() => {
    generateDocx();
  });
};
function generateMissionSummary(param) {
@@ -200,6 +268,10 @@
      new Date(res.data.startTime),
      new Date(res.data.endTime)
    );
    templateParam.subTitle =
      templateParam.sryTime.indexOf('季度') !== -1
        ? templateParam.sryTime.replace(/(.*)/, '')
        : templateParam.sryTime;
    templateParam.sryArea = res.data.area.districtName;
    templateParam.sryCount = res.data.count;
    templateParam.sryKm = Math.round(res.data.kilometres / 1000);
@@ -217,6 +289,7 @@
        return `${item.first}相关${item.second}处,占比 ${Math.round(item.third * 1000) / 10}%,主要涉及${getPollutingProblemTypes(item.first)}等`;
      })
      .join(';');
    templateParam.sryFocusRegion = res.data.focusRegion.join('、');
  });
}
@@ -224,22 +297,10 @@
  return dataAnalysisApi.fetchMissionList(param).then((res) => {
    templateParam.missionInfoList = res.data.map((item) => {
      item._time = formatDateTimeRange(item.startTime, item.endTime);
      item._airQulity = `AQI:${item.aqi}(${item.pollutionDegree})`;
      item._airQulity = `${item.aqi}(${item.pollutionDegree})`;
      item._abnormalFactors = item.abnormalFactors
        .map((factor) => factor)
        .map((factor) => factorName[factor])
        .join('、');
      return item;
    });
  });
}
function generateMissionDetail(param) {
  return dataAnalysisApi.fetchMissionDetail(param).then((res) => {
    templateParam.missionDetailList = res.data.map((item, index) => {
      const t = formatDateTimeRange(item.startTime, item.endTime).split(' ');
      item._index = index + 1;
      item._startTime = t[0];
      item._time = t[1];
      item._kilometres = Math.round(item.kilometres / 1000);
      const keySceneMap = new Map();
@@ -256,16 +317,35 @@
            `${info.count}个${type}(${info.scenes.map((s) => s.name).join('、')})`
        )
        .join('、');
      item._dataStat = item.dataStatistics
        .map(
          (e) =>
            `${e.factor.des}(范围${e.minValue}–${e.maxValue}μg/m³,均值${e.avgValue}μg/m³)`
        )
        .join('、');
      item._focusScene =
        item.scenes.length > 0
          ? item.scenes.map((s) => s.name).join('、')
          : '道路交通密集区和部分施工周边';
      return item;
    });
  });
}
function generateMissionDetail(param) {
  return dataAnalysisApi.fetchMissionDetail(param).then((res) => {
    templateParam.missionDetailList = res.data.map((item, index) => {
      const t = formatDateTimeRange(item.startTime, item.endTime).split(' ');
      item._index = index + 1;
      item._startTime = t[0];
      item._time = t[1];
      item._kilometres = Math.round(item.kilometres / 1000);
      item._airQulity = `${item.aqi}(${item.pollutionDegree})`;
      const factorNames = radioOptions(TYPE0).map((e) => e.name);
      item._dataStatistics = item.dataStatistics.filter((e) => {
        return factorNames.indexOf(e.factor) != -1;
      });
      radioOptions(TYPE0).forEach((f) => {
        const _factor = item.dataStatistics.find((e) => e.factor == f.name);
        item[`avgValue_${f.name}`] = _factor?.avgValue.toFixed(0) ?? '-';
        item[`maxValue_${f.name}`] = _factor?.maxValue.toFixed(0) ?? '-';
        item[`minValue_${f.name}`] = _factor?.minValue.toFixed(0) ?? '-';
      });
      return item;
@@ -274,44 +354,264 @@
}
function generateClueByRiskArea(param) {
  return dataAnalysisApi.fetchClueByRiskArea(param).then((res) => {
    templateParam.clueByAreaList = res.data.map((item, index) => {
      return {
        _index: index + 1,
        _area: item.sceneInfo.name + '周边',
        clueByFactorList: item.clueByFactorList.map((cbf) => {
          return {
            factor: cbf.factor,
            clues: cbf.clues.map((clue) => {
  const indexArr = [
    'A',
    'B',
    'C',
    'D',
    'E',
    'F',
    'G',
    'H',
    'I',
    'J',
    'K',
    'L',
    'M',
    'N',
    'O',
    'P',
    'Q',
    'R',
    'S',
    'T',
    'U',
    'V',
    'W',
    'X',
    'Y',
    'Z'
  ];
  const _param = {
    area: param.area,
    startTime: param.startTime,
    endTime: param.endTime,
    removeOtherDistrict: param.removeOtherDistrict,
    removeNoPollutedSource: param.removeNoPollutedSource
  };
  return dataAnalysisApi.fetchClueByRiskArea(_param).then((res) => {
    templateParam.showPollutedArea = formObj.value.showPollutedArea;
    templateParam.clueByAreaList = res.data
      .groupBy((e) => e.township)
      .map((item, index) => {
        const { key: township, values: clues } = item;
        let typeCount = {};
        let lastSceneType;
        let sceneIndex = 0;
        const _scenes = clues.flatMap((e) =>
          e.clue.pollutedSource.sceneList.map((s, index) => {
            const i = lastSceneType == s.type ? ++sceneIndex : 0;
            typeCount[s.type] = typeCount[s.type] ? typeCount[s.type] + 1 : 1;
            lastSceneType = s.type;
            return {
              des: `${s.type}${i + 1}:${s.name},位于${s.location},距${s.closestStation.name}${parseInt(s.length)}米;`
            };
          })
        );
        let _sceneDes = `走航过程中溯源到${_scenes.length}个风险源`;
        if (_scenes.length > 0) {
          _sceneDes += ',其类型是';
          _sceneDes += Object.keys(typeCount)
            .map((e) => `${e}(${typeCount[e]}个)`)
            .join('、');
          _sceneDes += ':';
        } else {
          _sceneDes = '走航过程中未溯源到风险源。';
        }
        return {
          _index: index + 1,
          // _area: `${item.sceneInfo.type}${item.sceneInfo.name}周边`,
          _area: `${township}`,
          _sceneDes,
          _scenes,
          clueList: clues.map((item3, index3) => {
            const clue = item3.clue;
            let _riskRegion = '';
            if (
              clue.pollutedArea.address.indexOf(
                clue.pollutedArea.streetNumber
              ) == -1
            ) {
              // _riskRegion +=
              //   (clue.pollutedArea.address ?? '') +
              //   '(' +
              //   (clue.pollutedArea.street ?? '') +
              //   (clue.pollutedArea.streetNumber ?? '') +
              //   (clue.pollutedArea.direction ?? '') +
              //   ')';
              _riskRegion = clue.pollutedArea.address;
            } else {
              _riskRegion = clue.pollutedArea.address;
            }
            return {
              index: indexArr[index3],
              showPollutedArea: formObj.value.showPollutedArea,
              _title: _riskRegion,
              _factorNames: Object.keys(clue.pollutedData.statisticMap)
                .map((e) => factorName[e])
<<<<<<< HEAD
                .join('、'),
              _date: moment(clue.pollutedData.startTime).format('YYYY-MM-DD'),
              _time:
                moment(clue.pollutedData.startTime).format('HH:mm:ss') +
                ' - ' +
                moment(clue.pollutedData.endTime).format('HH:mm:ss'),
              _riskRegion: _riskRegion,
              _exceptionType: clue.pollutedData.exception,
              _images: generateChartImg(clue.pollutedData),
              _conclusion: clue.pollutedSource.conclusion.replace(
                /,发现[0-9]*个风险源,包含[0-9]*个.*。/,
                '。'
              ),
              _hasScene: clue.pollutedSource.sceneList.length > 0
            };
          })
          // clueByFactorList: clues
          //   .groupBy((e) => e.factorTag)
          //   .map((item2, index2) => {
          //     const { key: factorTag, values: clues2 } = item2;
          //     const factorNames = [...new Set(clues2.flatMap((e) => e.factors))]
          //       .map((e) => factorName[e])
          //       .join('、');
          //     return {
          //       index: index2 + 1,
          //       factor: factorNames,
          //       clues: clues2.map((item3, index3) => {
          //         const clue = item3.clue;
          //         let _riskRegion = '';
          //         if (
          //           clue.pollutedArea.address.indexOf(
          //             clue.pollutedArea.streetNumber
          //           ) == -1
          //         ) {
          //           _riskRegion +=
          //             (clue.pollutedArea.address ?? '') +
          //             '(' +
          //             (clue.pollutedArea.street ?? '') +
          //             (clue.pollutedArea.streetNumber ?? '') +
          //             (clue.pollutedArea.direction ?? '') +
          //             ')';
          //         } else {
          //           _riskRegion = clue.pollutedArea.address;
          //         }
          //         return {
          //           index: index3 + 1 + '',
          //           showPollutedArea: formObj.value.showPollutedArea,
          //           _title:
          //             (clue.pollutedArea.street ?? '') +
          //             (clue.pollutedArea.streetNumber ?? '') +
          //             (clue.pollutedArea.direction ?? ''),
          //           _factorNames: Object.keys(clue.pollutedData.statisticMap)
          //             .map((e) => factorName[e])
          //             .join('、'),
          //           _time:
          //             moment(clue.pollutedData.startTime).format(
          //               'YYYY-MM-DD HH:mm:ss'
          //             ) +
          //             ' - ' +
          //             moment(clue.pollutedData.endTime).format('HH:mm:ss'),
          //           _riskRegion: _riskRegion,
          //           _exceptionType: clue.pollutedData.exception,
          //           _images: generateChartImg(clue.pollutedData),
          //           _conclusion: clue.pollutedSource.conclusion,
          //           _hasScene: clue.pollutedSource.sceneList.length > 0,
          //           // _scenes:
          //           //   clue.pollutedSource.sceneList.length > 0
          //           //     ? clue.pollutedSource.sceneList
          //           //         .map(
          //           //           (s, index) =>
          //           //             `${index + 1}. ${s.name},${s.type},位于${s.location},距${s.closestStation.name}${parseInt(s.length)}米;`
          //           //         )
          //           //         .join('\r\n')
          //           //     : '无',
          //           _scenes: clue.pollutedSource.sceneList.map((s, index) => {
          //             return {
          //               des: `${index + 1}. ${s.name},${s.type},位于${s.location},距${s.closestStation.name}${parseInt(s.length)}米;`
          //             };
          //           })
          //         };
          //       })
          //     };
          //   })
=======
                .join('、');
              return {
                _factorNames: Object.keys(clue.pollutedData.statisticMap)
                  .map((e) => e)
                  .join('、'),
                _time:
                  moment(clue.pollutedData.startTime).format('HH:mm:ss') +
                  ' - ' +
                  moment(clue.pollutedData.endTime).format('HH:mm:ss'),
                _riskRegion: clue.pollutedArea.address
                  ? clue.pollutedArea.address
                  : '',
                _exceptionType: clue.pollutedData.exception,
                _images: generateChartImg(clue.pollutedData),
                _conclusion: clue.pollutedSource.conclusion,
                _scenes:
                  clue.pollutedSource.sceneList.length > 0
                    ? clue.pollutedSource.sceneList
                        .map(
                          (s, index) =>
                            `${index + 1}. ${s.name},${s.type},位于${s.location},距${s.closestStation.name}${parseInt(s.length)}米;`
                        )
                        .join('\n')
                    : '无'
                index: index2 + 1,
                factor: factorNames,
                clues: clues2.map((item3, index3) => {
                  const clue = item3.clue;
                  let _riskRegion = '';
                  if (
                    parseInt(clue.pollutedArea.distance) <
                    parseInt(clue.pollutedArea.distance2)
                  ) {
                    if (
                      clue.pollutedArea.address.indexOf(
                        clue.pollutedArea.streetNumber
                      ) == -1
                    ) {
                      _riskRegion +=
                        (clue.pollutedArea.address ?? '') +
                        '(' +
                        (clue.pollutedArea.street ?? '') +
                        (clue.pollutedArea.streetNumber ?? '') +
                        (clue.pollutedArea.direction ?? '') +
                        ')';
                    } else {
                      _riskRegion = clue.pollutedArea.address;
                    }
                  } else {
                    _riskRegion +=
                      (clue.pollutedArea.address ?? '') +
                      '(' +
                      (clue.pollutedArea.street ?? '') +
                      (clue.pollutedArea.roadinter ?? '') +
                      ')';
                  }
                  return {
                    index: index3 + 1 + '',
                    showPollutedArea: formObj.value.showPollutedArea,
                    _title:
                      // (clue.pollutedArea.street ?? '') +
                      // (clue.pollutedArea.streetNumber ?? '') +
                      // (clue.pollutedArea.direction ?? ''),
                      clue.pollutedArea.address ?? '',
                    _factorNames: Object.keys(clue.pollutedData.statisticMap)
                      .map((e) => factorName[e])
                      .join('、'),
                    _time:
                      moment(clue.pollutedData.startTime).format(
                        'YYYY-MM-DD HH:mm:ss'
                      ) +
                      ' - ' +
                      moment(clue.pollutedData.endTime).format('HH:mm:ss'),
                    _riskRegion: _riskRegion,
                    _exceptionType: clue.pollutedData.exception,
                    _images: generateChartImg(clue.pollutedData),
                    _conclusion: clue.pollutedSource.conclusion,
                    _hasScene: clue.pollutedSource.sceneList.length > 0,
                    // _scenes:
                    //   clue.pollutedSource.sceneList.length > 0
                    //     ? clue.pollutedSource.sceneList
                    //         .map(
                    //           (s, index) =>
                    //             `${index + 1}. ${s.name},${s.type},位于${s.location},距${s.closestStation.name}${parseInt(s.length)}米;`
                    //         )
                    //         .join('\r\n')
                    //     : '无',
                    _scenes: clue.pollutedSource.sceneList.map((s, index) => {
                      return {
                        des: `${index + 1}. ${s.name},${s.type},位于${s.location},距${s.closestStation.name}${parseInt(s.length)}米;`
                      };
                    })
                  };
                })
              };
            })
          };
        })
      };
    });
>>>>>>> ce17d42203a17120736d796d0e83b3742c4ec441
        };
      });
  });
}
@@ -327,13 +627,17 @@
  factorDatas.setData(pollutedData.historyDataList, 0, () => {
    for (const key in pollutedData.statisticMap) {
      const value = pollutedData.statisticMap[key];
      const _chartOptions = factorDataParser.parseData(factorDatas, [
        {
          label: value.factorName,
          name: value.factorName,
          value: value.factorId + ''
        }
      ]);
      const _chartOptions = factorDataParser.parseData(
        factorDatas,
        [
          {
            label: value.factorName,
            name: value.factorName,
            value: value.factorId + ''
          }
        ],
        false
      );
      _chartOptions.forEach((o) => {
        images.push({
          url: chartToImg.generateEchartsImage(o, exceptionIndexArr, 20)
@@ -348,63 +652,199 @@
  return images;
}
function handleMixClick() {
  const tags = [1, 2];
  const fetchGridData = () => {
    gridApi.mixUnderwayGridData(props.groupId, tags).then((res) => {
      const gridData = res.data.map((v) => {
        const data = v.pm25;
        const grid = gridCellList.value.find((g) => {
          return g.cellIndex == v.cellId;
function generateGridFusion(param) {
  return dataAnalysisApi.fetchGridFusion(param).then((res) => {
    const promiseList = [];
    templateParam.gridFusionByAQIList = [];
    res.data.forEach((item) => {
      const scenes = [];
      item.missionList.forEach((m) => {
        m.keyScene.map((s) => {
          if (scenes.indexOf(s.name) == -1) {
            scenes.push(s.name);
          }
        });
        const { color, nextColor, range, nextRange } =
          Legend.getStandardColorAndNext('PM25', data);
        const ratio = (data - range) / (nextRange - range);
        const _color = getColorBetweenTwoColors(
          color.map((v) => v * 255),
          nextColor.map((v) => v * 255),
          ratio
        );
        // // 根据遥测数据计算网格颜色
        //         const { color, nextColor, range, nextRange } =
        //           Legend.getCustomColorAndNext(data, min, max);
        //         const ratio = (data - range) / (nextRange - range);
        //         const _color = getColorBetweenTwoColors(
        //           color.map((v) => v * 255),
        //           nextColor.map((v) => v * 255),
        //           ratio
        //         );
        return {
          centerLng: grid.longitude,
          centerLat: grid.latitude,
          value: _color,
          coordinates: [
            [grid.point1Lon, grid.point1Lat],
            [grid.point2Lon, grid.point2Lat],
            [grid.point3Lon, grid.point3Lat],
            [grid.point4Lon, grid.point4Lat]
          ]
        };
      });
      // chartMapAmap.generateGridMap(gridData).then((url) => {
      //   gridBase64Url.value = url;
      // });
      gridBase64Url.value = chartMap.generateGridMap(gridData);
    });
  };
      const gfbAQI = {
        pollutionDegree: item.pollutionDegree,
        _areaDes: `走航区域经过${scenes.join('、')}`,
        _gridDes: `${item.gridLen}米正方形网格`,
        _missionDes: `${item.missionList.map((m) => m.missionCode).join('、')}共${item.missionList.length}次`
      };
      const _highRiskGridList = [];
      Object.keys(item.highRiskGridMap).forEach((key, i) => {
        const g = item.highRiskGridMap[key][0];
  if (gridCellList.value.length == 0) {
    gridApi
      .fetchGridCell(props.groupId)
      .then((res) => {
        gridCellList.value = res.data;
      })
      .then(() => fetchGridData());
  } else {
    fetchGridData();
        const infoDes = item.highRiskGridMap[key].map((e) => {
          return {
            factorValue: e.factorValue,
            // 四至范围,顺序为最小经度,最大经度,最小纬度,最大纬度
            _boundsDes: `经度${e.bounds[0]}至${e.bounds[1]},纬度${e.bounds[2]}至${e.bounds[3]}`,
            // 涉及街镇
            town: e.town,
            _scenesDes:
              e.highRiskScenes.length > 0
                ? `涉及的污染场景包括${e.highRiskScenes.map((s) => s.name).join('、')}`
                : '网格内可能存在隐藏风险源'
          };
        });
        const infoDes2 = item.highRiskGridMap2[key].map((e) => {
          return {
            factorValue: e.factorValue,
            // 四至范围,顺序为最小经度,最大经度,最小纬度,最大纬度
            _boundsDes: `经度${e.bounds[0]}至${e.bounds[1]},纬度${e.bounds[2]}至${e.bounds[3]}`,
            // 涉及街镇
            town: e.town,
            _scenesDes:
              e.highRiskScenes.length > 0
                ? `涉及的污染场景包括${e.highRiskScenes.map((s) => s.name).join('、')}`
                : '网格内可能存在隐藏风险源'
          };
        });
        // })
        // item.highRiskGridList.forEach((g, i) => {
        // const g = item.highRiskGridList[0];
        // const i = 0;
        const p = generateGridFusionImg(g.factorType, item.gridFusionList).then(
          (url) => {
            const { url1, url2 } = url;
            _highRiskGridList.push({
              index: i + 1,
              factor: factorName[g.factorType],
              // 标准色网格图
              gridImgUrl1: url1,
              // 对比色网格图
              gridImgUrl2: url2,
              infoDes: infoDes,
              infoDes2: infoDes2
            });
          }
        );
        promiseList.push(p);
      });
      gfbAQI.highRiskGridList = _highRiskGridList;
      templateParam.gridFusionByAQIList.push(gfbAQI);
    });
    return Promise.all(promiseList).then(() => {
      return templateParam.gridFusionByAQIList;
    });
    // templateParam.gridFusionByAQIList = res.data.map((item) => {
    //   const scenes = [];
    //   item.missionList.forEach((m) => {
    //     m.keyScene.map((s) => {
    //       if (scenes.indexOf(s.name) == -1) {
    //         scenes.push(s.name);
    //       }
    //     });
    //   });
    //   return {
    //     pollutionDegree: item.pollutionDegree,
    //     _areaDes: `走航区域经过${scenes.join('、')}`,
    //     _gridDes: `${item.gridLen}米正方形网格`,
    //     _missionDes: `${item.missionList.map((m) => m.missioncode).join('、')}${item.missionList.length}次`,
    //     highRiskGridList: item.highRiskGridList.map(async (g, i) => {
    //       const { url1, url2 } = await generateGridFusionImg(
    //         g.factorType,
    //         item.gridFusionList
    //       );
    //       return {
    //         index: i + 1,
    //         factor: g.factorType,
    //         // 标准色网格图
    //         gridImgUrl1: url1,
    //         // 对比色网格图
    //         gridImgUrl2: url2,
    //         factorValue: g.factorValue,
    //         // 四至范围,顺序为最小经度,最大经度,最小纬度,最大纬度
    //         _boundsDes: `经度${g.bounds[0]}至${g.bounds[1]},纬度${g.bounds[2]}至${g.bounds[3]}`,
    //         // 涉及街镇
    //         town: g.town,
    //         _scenesDes: g.highRiskScenes.map((s) => s.name).join('、')
    //       };
    //     })
    //   };
    // });
  });
}
async function generateGridFusionImg(factorName, dataList) {
  let min = 1000000;
  let max = 0;
  dataList.forEach((v) => {
    min = Math.min(min, getGridDataDetailFactorValue(v.data, factorName));
    max = Math.max(max, getGridDataDetailFactorValue(v.data, factorName));
  });
  const gridDataStand = [];
  const gridDataCustom = [];
  dataList.forEach((v) => {
    const data = getGridDataDetailFactorValue(v.data, factorName);
    const grid = v.cell;
    // 标准色
    const {
      color: color1,
      nextColor: nextColor1,
      range: range1,
      nextRange: nextRange1
    } = Legend.getStandardColorAndNext(factorName, data);
    const ratio1 = (data - range1) / (nextRange1 - range1);
    const _color1 = getColorBetweenTwoColors(
      color1.map((v) => v * 255),
      nextColor1.map((v) => v * 255),
      ratio1
    );
    // 对比色
    const { color, nextColor, range, nextRange } = Legend.getCustomColorAndNext(
      data,
      min,
      max
    );
    const ratio = (data - range) / (nextRange - range);
    const _color = getColorBetweenTwoColors(
      color.map((v) => v * 255),
      nextColor.map((v) => v * 255),
      ratio
    );
    gridDataStand.push({
      centerLng: grid.longitude,
      centerLat: grid.latitude,
      value: _color1,
      coordinates: [
        [grid.point1Lon, grid.point1Lat],
        [grid.point2Lon, grid.point2Lat],
        [grid.point3Lon, grid.point3Lat],
        [grid.point4Lon, grid.point4Lat]
      ]
    });
    gridDataCustom.push({
      centerLng: grid.longitude,
      centerLat: grid.latitude,
      value: _color,
      coordinates: [
        [grid.point1Lon, grid.point1Lat],
        [grid.point2Lon, grid.point2Lat],
        [grid.point3Lon, grid.point3Lat],
        [grid.point4Lon, grid.point4Lat]
      ]
    });
  });
  const url1 = await chartMap.generateGridMap(gridDataStand);
  const url2 = await chartMap.generateGridMap(gridDataCustom);
  if (gridBase64Url.value == null) {
    gridBase64Url.value = url1;
  }
  return {
    url1,
    url2
  };
}
function handleMixClick({ tags = [10, 11], factorName = 'PM25' }) {
  generateGridFusion(params.value).then(() => {});
}
function generateDocx() {
@@ -458,19 +898,28 @@
  // 不是季度第一天则返回具体日期范围
  if (!quarter) {
    return `${startYear}年${startMonth + 1}月${startDate}日-${endYear}年${endMonth + 1}月${endDate}日`;
    // return `${startYear}年${startMonth + 1}月${startDate}日-${endYear}年${endMonth + 1}月${endDate}日`;
    return startYear == endYear
      ? `${startYear}年${startMonth + 1}月-${endMonth + 1}月`
      : `${startYear}年${startMonth + 1}月-${endYear}年${endMonth + 1}月`;
  }
  // 验证是否为对应季度最后一个月
  const expectedEndMonth = quarter * 3 - 1; // Q1:2(3月), Q2:5(6月), Q3:8(9月), Q4:11(12月)
  if (endMonth !== expectedEndMonth) {
    return `${startYear}年${startMonth + 1}月${startDate}日-${endYear}年${endMonth + 1}月${endDate}日`;
    // return `${startYear}年${startMonth + 1}月${startDate}日-${endYear}年${endMonth + 1}月${endDate}日`;
    return startYear == endYear
      ? `${startYear}年${startMonth + 1}月-${endMonth + 1}月`
      : `${startYear}年${startMonth + 1}月-${endYear}年${endMonth + 1}月`;
  }
  // 验证是否为季度最后一天
  const lastDayOfEndMonth = new Date(endYear, endMonth + 1, 0).getDate();
  if (endDate !== lastDayOfEndMonth) {
    return `${startYear}年${startMonth + 1}月${startDate}日-${endYear}年${endMonth + 1}月${endDate}日`;
    // return `${startYear}年${startMonth + 1}月${startDate}日-${endYear}年${endMonth + 1}月${endDate}日`;
    return startYear == endYear
      ? `${startYear}年${startMonth + 1}月-${endMonth + 1}月`
      : `${startYear}年${startMonth + 1}月-${endYear}年${endMonth + 1}月`;
  }
  const quarterNames = ['', '第一季度', '第二季度', '第三季度', '第四季度'];
@@ -537,3 +986,8 @@
  return `${datePart} ${startTimePart}至${endTimePart}`;
}
</script>
<style scoped>
.el-checkbox {
  --el-checkbox-text-color: white;
}
</style>