| | |
| | | package com.flightfeather.uav.biz.sourcetrace.model |
| | | |
| | | import com.flightfeather.uav.biz.FactorFilter |
| | | import com.flightfeather.uav.common.utils.MapUtil |
| | | import com.flightfeather.uav.domain.entity.SceneInfo |
| | | import com.flightfeather.uav.domain.repository.SceneInfoRep |
| | | import com.flightfeather.uav.lightshare.bean.AreaVo |
| | | import com.flightfeather.uav.lightshare.bean.SceneInfoVo |
| | | import com.flightfeather.uav.lightshare.eunm.SceneType |
| | | import com.flightfeather.uav.socket.eunm.FactorType |
| | | import org.springframework.beans.BeanUtils |
| | | import org.springframework.web.context.ContextLoader |
| | | import kotlin.math.round |
| | | |
| | | /** |
| | | * 污染来源 |
| | |
| | | */ |
| | | |
| | | // 溯源企业 |
| | | var sceneList:List<SceneInfo?>? = null |
| | | var sceneList: List<SceneInfoVo?>? = null |
| | | |
| | | // 溯源推理结论 |
| | | var conclusion: String? = null |
| | | |
| | | fun searchScenes(pollutedArea: PollutedArea, pollutedData: PollutedData) { |
| | | ContextLoader.getCurrentWebApplicationContext()?.getBean(SceneInfoRep::class.java)?.run { |
| | | searchScenes(pollutedArea, this, pollutedData) |
| | | } |
| | | } |
| | | |
| | | /** |
| | | * 查找系统内部溯源范围内的污染企业 |
| | | */ |
| | | fun searchScenes(pollutedArea: PollutedArea, sceneInfoRep: SceneInfoRep, factor: FactorFilter.SelectedFactor) { |
| | | fun searchScenes(pollutedArea: PollutedArea, sceneInfoRep: SceneInfoRep, pollutedData: PollutedData) { |
| | | // Fixme 2025.5.14: 污染源的坐标是高德地图坐标系(火星坐标系),而走航数据是WGS84坐标系 |
| | | // 按照区域检索内部污染源信息 |
| | | // 1. 首先按照四至范围从数据库初步筛选污染源,需要先将坐标转换为gcj02(火星坐标系),因为污染源场景信息都为此坐标系 |
| | | val polygonTmp = pollutedArea.polygon!!.map { |
| | | MapUtil.gcj02ToWgs84(it) |
| | | } |
| | | var result = mutableListOf<SceneInfo>() |
| | | // 1. 首先按照四至范围从数据库初步筛选污染源,此处的区域坐标已转换为火星坐标系 |
| | | val polygonTmp = pollutedArea.polygon!! |
| | | val fb = MapUtil.calFourBoundaries(polygonTmp) |
| | | val sceneList = sceneInfoRep.findByCoordinateRange(fb) |
| | | // 2. 再精确判断是否在反向溯源区域多边形内部 |
| | | val result = mutableListOf<SceneInfo>() |
| | | sceneList.forEach { |
| | | val point = it!!.longitude.toDouble() to it.latitude.toDouble() |
| | | if (MapUtil.isPointInPolygon(point, polygonTmp)) { |
| | |
| | | } |
| | | } |
| | | |
| | | this.sceneList = result |
| | | val closePolygonTmp = pollutedArea.closePolygon!! |
| | | val closeFb = MapUtil.calFourBoundaries(closePolygonTmp) |
| | | val closeSceneList = sceneInfoRep.findByCoordinateRange(closeFb) |
| | | // 2. 再精确判断是否在反向溯源区域多边形内部 |
| | | closeSceneList.forEach { |
| | | val point = it!!.longitude.toDouble() to it.latitude.toDouble() |
| | | if (MapUtil.isPointInPolygon(point, closePolygonTmp)) { |
| | | result.add(it) |
| | | } |
| | | } |
| | | |
| | | TODO("按照所选监测因子类型,区分污染源类型") |
| | | // 根据污染因子的量级,计算主要的污染场景类型,筛选结果 |
| | | val mainSceneType = calSceneType(pollutedData) |
| | | if (mainSceneType != null) { |
| | | this.conclusion = mainSceneType.first |
| | | result = result.filter { |
| | | val r = mainSceneType.second.find { s-> |
| | | s.value == it.typeId.toInt() |
| | | } |
| | | r != null |
| | | }.toMutableList() |
| | | } |
| | | |
| | | this.sceneList = findClosestStation(sceneInfoRep, result) |
| | | |
| | | } |
| | | |
| | | /** |
| | | * 计算可能的相关污染场景类型以及推理结论 |
| | | */ |
| | | @Throws(Exception::class) |
| | | private fun calSceneType(pollutedData: PollutedData): Pair<String, List<SceneType>>? { |
| | | when (pollutedData.selectedFactor?.main) { |
| | | // 氮氧化合物,一般由于机动车尾气,同步计算CO |
| | | FactorType.NO2 -> { |
| | | val coAvg = round(pollutedData.dataList.map { it.co!! }.average()) / 1000 |
| | | return "氮氧化合物偏高,CO的量级为${coAvg}mg/m³,一般由于机动车尾气造成,污染源以汽修、加油站为主" to |
| | | listOf(SceneType.TYPE6, SceneType.TYPE10, SceneType.TYPE17) |
| | | } |
| | | |
| | | FactorType.CO -> return null |
| | | |
| | | FactorType.H2S -> return null |
| | | |
| | | FactorType.SO2 -> return null |
| | | |
| | | FactorType.O3 -> return null |
| | | // a) pm2.5、pm10特别高,两者在各情况下同步展示,pm2.5占pm10的比重变化,比重越高,越有可能是餐饮 |
| | | // b) pm10特别高、pm2.5较高,大颗粒扬尘污染,只展示pm10,pm2.5占pm10的比重变化,工地为主 |
| | | FactorType.PM25, |
| | | FactorType.PM10, |
| | | -> { |
| | | val pm25Avg = round(pollutedData.dataList.map { it.pm25!! }.average() * 10) / 10 |
| | | val pm10Avg = round(pollutedData.dataList.map { it.pm10!! }.average() * 10) / 10 |
| | | // 计算异常数据的pm2.5占pm10比重的均值 |
| | | val percentageAvg = pollutedData.dataList.map { |
| | | it.pm25!! / it.pm10!! |
| | | }.average() |
| | | val str = |
| | | "PM2.5量级为${pm25Avg}μg/m³,PM10量级为${pm25Avg}μg/m³,PM2.5占PM10的比重为${round(percentageAvg * 100)}%" |
| | | return if (percentageAvg > 0.666) { |
| | | "${str},比重较大,污染源以餐饮为主,工地次之" to |
| | | listOf(SceneType.TYPE1, SceneType.TYPE2, SceneType.TYPE3, SceneType.TYPE14, SceneType.TYPE5) |
| | | } else if (percentageAvg < 0.333) { |
| | | "${str},比重较小,属于大颗粒扬尘污染,污染源以工地为主" to |
| | | listOf(SceneType.TYPE1, SceneType.TYPE2, SceneType.TYPE3, SceneType.TYPE14, SceneType.TYPE5) |
| | | } else { |
| | | "${str},污染源以餐饮、工地为主" to |
| | | listOf(SceneType.TYPE1, SceneType.TYPE2, SceneType.TYPE3, SceneType.TYPE14, SceneType.TYPE5) |
| | | } |
| | | } |
| | | // c) VOC较高,同比计算pm2.5的量级,可能存在同步偏高(汽修、加油站), 同步计算O3是否有高值 |
| | | // d) VOC较高,处于加油站(车辆拥堵情况),CO一般较高, 同步计算O3是否有高值 |
| | | FactorType.VOC -> { |
| | | val pm25Avg = round(pollutedData.dataList.map { it.pm25!! }.average() * 10) / 10 |
| | | val coAvg = round(pollutedData.dataList.map { it.co!! }.average()) / 1000 |
| | | val o3Avg = round(pollutedData.dataList.map { it.o3!! }.average() * 10) / 10 |
| | | return "VOC偏高,同时PM2.5量级为${pm25Avg}μg/m³,CO量级为${coAvg}mg/m³,O3量级为${o3Avg}μg/m³,污染源以汽修、加油站为主" to |
| | | listOf(SceneType.TYPE6, SceneType.TYPE17, SceneType.TYPE12) |
| | | } |
| | | |
| | | else -> return null |
| | | } |
| | | } |
| | | |
| | | /** |
| | | * 计算最近的监测站点 |
| | | */ |
| | | private fun findClosestStation(sceneInfoRep: SceneInfoRep, sceneList: List<SceneInfo>): List<SceneInfoVo> { |
| | | val res1 = sceneInfoRep.findByArea(AreaVo().apply { |
| | | sceneTypeId = SceneType.TYPE19.value.toString() |
| | | }) |
| | | |
| | | val res2 = sceneInfoRep.findByArea(AreaVo().apply { |
| | | sceneTypeId = SceneType.TYPE20.value.toString() |
| | | }) |
| | | val res = res1.toMutableList().apply { addAll(res2) } |
| | | |
| | | return sceneList.map { |
| | | var minLen = -1.0 |
| | | var selectedRes: SceneInfo? = null |
| | | res.forEach { r -> |
| | | val dis = MapUtil.getDistance( |
| | | it.longitude.toDouble(), |
| | | it.latitude.toDouble(), |
| | | r!!.longitude.toDouble(), |
| | | r.latitude.toDouble() |
| | | ) |
| | | if (minLen < 0 || dis < minLen) { |
| | | minLen = dis |
| | | selectedRes = r |
| | | } |
| | | } |
| | | val vo = SceneInfoVo() |
| | | BeanUtils.copyProperties(it, vo) |
| | | vo.closestStation = selectedRes |
| | | vo.length = minLen |
| | | |
| | | return@map vo |
| | | } |
| | | } |
| | | } |