| | |
| | | // 按照区域检索内部污染源信息 |
| | | var result = mutableListOf<SceneInfo>() |
| | | // 1. 首先按照四至范围从数据库初步筛选污染源,此处的区域坐标已转换为火星坐标系 |
| | | val polygonTmp = pollutedArea.polygon!! |
| | | val fb = MapUtil.calFourBoundaries(polygonTmp) |
| | | val sceneList = sceneInfoRep.findByCoordinateRange(fb) |
| | | // 2. 再精确判断是否在反向溯源区域多边形内部 |
| | | sceneList.forEach { |
| | | val point = it!!.longitude.toDouble() to it.latitude.toDouble() |
| | | if (MapUtil.isPointInPolygon(point, polygonTmp)) { |
| | | result.add(it) |
| | | } |
| | | } |
| | | val polygonTmp = pollutedArea.polygon |
| | | this.sceneList = emptyList() |
| | | |
| | | val closePolygonTmp = pollutedArea.closePolygon!! |
| | | val closeFb = MapUtil.calFourBoundaries(closePolygonTmp) |
| | | val closeSceneList = sceneInfoRep.findByCoordinateRange(closeFb) |
| | | // 2. 再精确判断是否在反向溯源区域多边形内部 |
| | | closeSceneList.forEach { |
| | | val point = it!!.longitude.toDouble() to it.latitude.toDouble() |
| | | if (MapUtil.isPointInPolygon(point, closePolygonTmp)) { |
| | | result.add(it) |
| | | } |
| | | } |
| | | |
| | | // 根据污染因子的量级,计算主要的污染场景类型,筛选结果 |
| | | val mainSceneType = calSceneType(pollutedData) |
| | | if (mainSceneType != null) { |
| | | // this.conclusion = mainSceneType.first |
| | | result = result.filter { |
| | | val r = mainSceneType.second.find { s-> |
| | | s.value == it.typeId.toInt() |
| | | if (polygonTmp != null) { |
| | | val fb = MapUtil.calFourBoundaries(polygonTmp) |
| | | val sceneList = sceneInfoRep.findByCoordinateRange(fb) |
| | | // 2. 再精确判断是否在反向溯源区域多边形内部 |
| | | sceneList.forEach { |
| | | val point = it!!.longitude.toDouble() to it.latitude.toDouble() |
| | | if (MapUtil.isPointInPolygon(point, polygonTmp)) { |
| | | result.add(it) |
| | | } |
| | | r != null |
| | | }.toMutableList() |
| | | } |
| | | } |
| | | |
| | | this.sceneList = findClosestStation(sceneInfoRep, result) |
| | | val closePolygonTmp = pollutedArea.closePolygon!! |
| | | val closeFb = MapUtil.calFourBoundaries(closePolygonTmp) |
| | | val closeSceneList = sceneInfoRep.findByCoordinateRange(closeFb) |
| | | // 2. 再精确判断是否在反向溯源区域多边形内部 |
| | | closeSceneList.forEach { |
| | | val point = it!!.longitude.toDouble() to it.latitude.toDouble() |
| | | if (MapUtil.isPointInPolygon(point, closePolygonTmp)) { |
| | | result.add(it) |
| | | } |
| | | } |
| | | |
| | | // 根据污染因子的量级,计算主要的污染场景类型,筛选结果 |
| | | val mainSceneType = calSceneType(pollutedData) |
| | | if (mainSceneType != null) { |
| | | // this.conclusion = mainSceneType.first |
| | | result = result.filter { |
| | | val r = mainSceneType.second.find { s -> |
| | | s.value == it.typeId.toInt() |
| | | } |
| | | r != null |
| | | }.toMutableList() |
| | | } |
| | | this.sceneList = findClosestStation(sceneInfoRep, result) |
| | | } |
| | | |
| | | val txt = summaryTxt(pollutedData, this.sceneList!!) |
| | | this.conclusion = txt |
| | |
| | | // 氮氧化合物,一般由于机动车尾气,同步计算CO |
| | | FactorType.NO2 -> { |
| | | val coAvg = round(pollutedData.dataList.map { it.co!! }.average()) / 1000 |
| | | "氮氧化合物偏高,CO的量级为${coAvg}mg/m³,一般由于机动车尾气造成,污染源以汽修、加油站为主" to |
| | | "氮氧化合物偏高,CO的量级为${coAvg}mg/m³,一般由于机动车尾气造成,污染源以汽修、加油站为主" to |
| | | listOf(SceneType.TYPE6, SceneType.TYPE10, SceneType.TYPE17) |
| | | } |
| | | |
| | | FactorType.CO -> null |
| | | FactorType.CO -> null |
| | | |
| | | FactorType.H2S -> null |
| | | FactorType.H2S -> null |
| | | |
| | | FactorType.SO2 -> null |
| | | FactorType.SO2 -> null |
| | | |
| | | FactorType.O3 -> null |
| | | FactorType.O3 -> null |
| | | // a) pm2.5、pm10特别高,两者在各情况下同步展示,pm2.5占pm10的比重变化,比重越高,越有可能是餐饮 |
| | | // b) pm10特别高、pm2.5较高,大颗粒扬尘污染,只展示pm10,pm2.5占pm10的比重变化,工地为主 |
| | | FactorType.PM25, |
| | |
| | | }.average() |
| | | val str = |
| | | "PM2.5量级为${pm25Avg}μg/m³,PM10量级为${pm10Avg}μg/m³,PM2.5占PM10的比重为${round(percentageAvg * 100)}%" |
| | | if (percentageAvg > 0.666) { |
| | | if (percentageAvg > 0.666) { |
| | | "${str},比重较大,污染源以餐饮为主,工地次之" to |
| | | listOf( |
| | | SceneType.TYPE1, |
| | |
| | | val pm25Avg = round(pollutedData.dataList.map { it.pm25!! }.average() * 10) / 10 |
| | | val coAvg = round(pollutedData.dataList.map { it.co!! }.average()) / 1000 |
| | | val o3Avg = round(pollutedData.dataList.map { it.o3!! }.average() * 10) / 10 |
| | | "VOC偏高,同时PM2.5量级为${pm25Avg}μg/m³,CO量级为${coAvg}mg/m³,O3量级为${o3Avg}μg/m³,污染源以汽修、加油站为主" to |
| | | "VOC偏高,同时PM2.5量级为${pm25Avg}μg/m³,CO量级为${coAvg}mg/m³,O3量级为${o3Avg}μg/m³,污染源以汽修、加油站为主" to |
| | | listOf(SceneType.TYPE6, SceneType.TYPE17, SceneType.TYPE12) |
| | | } |
| | | |
| | | else -> null |
| | | else -> null |
| | | } |
| | | des = res?.first |
| | | res?.second?.let { sceneTypes.addAll(it) } |
| | |
| | | val et = DateUtil.instance.getTime(pollutedData.endTime) |
| | | var txt = |
| | | "在${st}至${et}之间,出现${pollutedData.exception}" |
| | | pollutedData.statisticMap.entries.forEach {s -> |
| | | pollutedData.statisticMap.entries.forEach { s -> |
| | | txt += ",${s.key.des}最低值为${s.value.min}μg/m³,最高值为${s.value.max}μg/m³,均值为${s.value.avg}μg/m³" |
| | | } |
| | | if (sceneList.isEmpty()) { |