src/main/kotlin/com/flightfeather/uav/repository/impl/AirDataRepositoryImpl.kt
@@ -1,32 +1,330 @@
package com.flightfeather.uav.repository.impl
import com.flightfeather.uav.domain.entity.RealTimeData
import com.flightfeather.uav.domain.mapper.RealTimeDataMapper
import com.flightfeather.uav.common.utils.GsonUtils
import com.flightfeather.uav.domain.entity.*
import com.flightfeather.uav.domain.mapper.*
import com.flightfeather.uav.lightshare.bean.DataVo
import com.flightfeather.uav.repository.AirDataRepository
import com.flightfeather.uav.socket.bean.AirData
import com.flightfeather.uav.socket.bean.AirDataPackage
import com.flightfeather.uav.socket.eunm.FactorType
import com.flightfeather.uav.socket.eunm.UWDeviceType
import com.github.pagehelper.PageHelper
import com.google.gson.Gson
import org.springframework.stereotype.Repository
import tk.mybatis.mapper.entity.Example
import java.math.BigDecimal
import java.text.SimpleDateFormat
import java.time.LocalDateTime
import java.time.ZoneId
import java.util.*
import kotlin.math.abs
import kotlin.math.sqrt
/**
 * @author riku
 * Date: 2020/6/11
 */
@Repository
class AirDataRepositoryImpl(private val realTimeDataMapper: RealTimeDataMapper): AirDataRepository {
class AirDataRepositoryImpl(
    private val realTimeDataMapper: RealTimeDataMapper,
    private val realTimeDataVehicleMapper: RealTimeDataVehicleMapper,
    private val realTimeDataUavMapper: RealTimeDataUavMapper,
    private val realTimeDataGridMapper: RealTimeDataGridMapper,
    private val factorCalibrationMapper: FactorCalibrationMapper
): AirDataRepository {
    // FIXME: 2021/10/25 临时车载数据,由于无人机部分监测因子数据无效,因此暂时采用车载数据作为填充
    private val tmpVehicleDataList = mutableListOf<BaseRealTimeData>()
    // 走航监测校准系数
    private val calibrationMap = mutableMapOf<String, MutableMap<Int, Float>>()
    // 走航监测校准系数更新时间
    private var cUpdateTime = LocalDateTime.now()
    // 走航监测校准系数更新时间间隔(分钟)
    private val cInterval = 5L
    override fun saveAirData(dataPackage: AirDataPackage): Int {
        val data = RealTimeData().apply {
            deviceCode = dataPackage.deviceCode
            latitude
            longitude
            latitude = BigDecimal.ZERO
            longitude = BigDecimal.ZERO
            altitude
            height
            factors = Gson().toJson(dataPackage.dataUnit)
            dataTime = dataPackage.dataTime
        }
        dataPackage.dataUnit.forEach {
            if (it is AirData) {
                when (it.factorId?.toInt()) {
                    FactorType.LAT.value -> {
                        data.latitude = it.factorData?.toBigDecimal()
                    }
                    FactorType.LNG.value -> {
                        data.longitude = it.factorData?.toBigDecimal()
                    }
                    FactorType.TIME.value -> {
                        it.statusList?.takeIf {l-> l.isNotEmpty() }?.get(0)?.let {d ->
                            data.dataTime = SimpleDateFormat("yyyy-MM-dd HH:mm:ss").parse(d)
                        }
                    }
                }
            }
        }
        realTimeDataMapper.insert(data)
        return 0
    }
    override fun savePrepData(dataPackage: AirDataPackage): Int {
        var count = 0
        when (UWDeviceType.getType(dataPackage.deviceCode)) {
            UWDeviceType.VEHICLE -> {
                val d = RealTimeDataVehicle()
                dataTransform(dataPackage, d)
                realTimeDataVehicleMapper.insert(d)
                count++
            }
            UWDeviceType.UAV -> {
                val d = RealTimeDataUav()
                dataTransform(dataPackage, d)
                realTimeDataUavMapper.insert(d)
                count++
            }
            UWDeviceType.GRID -> {
                val d = RealTimeDataGrid()
                dataTransform(dataPackage, d)
                realTimeDataGridMapper.insert(d)
                count++
            }
        }
        return count
    }
    override fun savePrepData(dataList: List<RealTimeData>): Int {
        var count = 0
        dataList.forEach {vo ->
            when (UWDeviceType.getType(vo.deviceCode)) {
                UWDeviceType.VEHICLE -> {
                    val d = RealTimeDataVehicle()
                    dataTransform(vo, d)
                    realTimeDataVehicleMapper.insert(d)
                    count++
                }
                UWDeviceType.UAV -> {
                    val d = RealTimeDataUav()
                    dataTransform(vo, d)
                    realTimeDataUavMapper.insert(d)
                    count++
                }
                UWDeviceType.GRID -> {
                    val d = RealTimeDataGrid()
                    dataTransform(vo, d)
                    realTimeDataGridMapper.insert(d)
                    count++
                }
            }
        }
        return count
    }
    override fun savePrepData2(dataList: List<DataVo>): Int {
        var count = 0
        dataList.forEach {vo ->
            when (UWDeviceType.getType(vo.deviceCode)) {
                UWDeviceType.VEHICLE -> {
                    val d = RealTimeDataVehicle()
                    dataTransform(vo, d)
                    /***************************************************************************************************/
                    // FIXME: 2021/10/27 车载监测部分因子量级调整:NO2*0.6,H2S*0.3, SO2*0.2, O3*0.5,其他要素不变
                    calibration(d, UWDeviceType.VEHICLE)
                    /***************************************************************************************************/
                    realTimeDataVehicleMapper.insert(d)
                    count++
                }
                UWDeviceType.UAV -> {
                    val d = RealTimeDataUav()
                    dataTransform(vo, d)
                    /***************************************************************************************************/
                    // FIXME: 2021/10/25 无人机部分因子采用车载数据填充,取最新的15分钟的数据
                    if (tmpVehicleDataList.isEmpty()) {
                        val p = PageHelper.startPage<RealTimeDataVehicle>(1, 225)
                        realTimeDataVehicleMapper.selectByExample(Example(RealTimeDataVehicle::class.java).apply {
                            orderBy("dataTime").desc()
                        }).let { tmpVehicleDataList.addAll(it) }
                    }
                    if (tmpVehicleDataList.isNotEmpty()) {
                        tmpVehicleDataList[0].let {
                            d.no2 = it.no2
                            d.co = it.co
                            d.h2s = it.h2s
                            d.so2 = it.so2
                            d.o3 = it.o3
                        }
                        tmpVehicleDataList.removeFirst()
                    }
                    /***************************************************************************************************/
                    realTimeDataUavMapper.insert(d)
                    count++
                }
                UWDeviceType.GRID -> {
                    val d = RealTimeDataGrid()
                    dataTransform(vo, d)
                    /**************************************************************************/
                    // FIXME: 2021/11/8 针对历史网格化原始数据,进行临时校准处理
                    val dTime = LocalDateTime.ofInstant(d.dataTime?.toInstant(), ZoneId.systemDefault())
                    // CO: 2021.8.28 17:27起 *0.25
                    val coTime = LocalDateTime.of(2021, 8, 28, 17, 27, 0)
                    if (dTime.isAfter(coTime)) {
                        d.co = d.co?.times(0.25f)
                    }
                    // NO2
                    d.no2 = d.no2?.times(0.6f)
                    // O3
                    d.o3 = abs(d.o3?.minus(d.no2?.div(2) ?: 0f) ?: 0f) * 1.5f
                    // SO2: *0.2, 2021.8.29 6:00起 *0.08
                    val so2Time = LocalDateTime.of(2021, 8, 29, 6, 0, 0)
                    d.so2 = if (dTime.isAfter(so2Time)) {
                        d.so2?.times(0.08f)
                    } else {
                        d.so2?.times(0.2f)
                    }
                    // H2S
                    d.h2s = d.h2s?.let { sqrt(it) * 2 }
                    /**************************************************************************/
                    realTimeDataGridMapper.insert(d)
                    count++
                }
                UWDeviceType.BOAT -> {
                }
            }
        }
        return count
    }
    private fun dataTransform(vo: RealTimeData, bean: BaseRealTimeData) {
        bean.apply {
            deviceCode = vo.deviceCode
            latitude = vo.latitude
            longitude = vo.longitude
            dataTime = vo.dataTime
            createTime = vo.createTime
            GsonUtils.parserJsonToArrayBeans(vo.factors, AirData::class.java).forEach {
                when (it.factorId?.toInt()) {
                    FactorType.NO2.value -> no2 = it.factorData?.toFloat()
                    FactorType.CO.value -> co = it.factorData?.toFloat()
                    FactorType.H2S.value -> h2s = it.factorData?.toFloat()
                    FactorType.SO2.value -> so2 = it.factorData?.toFloat()
                    FactorType.O3.value -> o3 = it.factorData?.toFloat()
                    FactorType.PM25.value -> pm25 = it.factorData?.toFloat()
                    FactorType.PM10.value -> pm10 = it.factorData?.toFloat()
                    FactorType.TEMPERATURE.value -> temperature = it.factorData?.toFloat()
                    FactorType.HUMIDITY.value -> humidity = it.factorData?.toFloat()
                    FactorType.VOC.value -> voc = it.factorData?.toFloat()
                    FactorType.NOI.value -> noi = it.factorData?.toFloat()
                    FactorType.VELOCITY.value -> velocity = it.factorData?.toFloat()
                    FactorType.WIND_SPEED.value -> windSpeed = it.factorData?.toFloat()
                    FactorType.WIND_DIRECTION.value -> windDirection = it.factorData?.toFloat()
                    FactorType.HEIGHT.value -> height = it.factorData?.toFloat()
                }
            }
        }
    }
    private fun dataTransform(dataPackage: AirDataPackage, bean: BaseRealTimeData) {
        bean.apply {
            deviceCode = dataPackage.deviceCode
            dataPackage.dataUnit.forEach {
                if (it is AirData) {
                    when (it.factorId?.toInt()) {
                        FactorType.NO2.value -> no2 = it.factorData?.toFloat()
                        FactorType.CO.value -> co = it.factorData?.toFloat()
                        FactorType.H2S.value -> h2s = it.factorData?.toFloat()
                        FactorType.SO2.value -> so2 = it.factorData?.toFloat()
                        FactorType.O3.value -> o3 = it.factorData?.toFloat()
                        FactorType.PM25.value -> pm25 = it.factorData?.toFloat()
                        FactorType.PM10.value -> pm10 = it.factorData?.toFloat()
                        FactorType.TEMPERATURE.value -> temperature = it.factorData?.toFloat()
                        FactorType.HUMIDITY.value -> humidity = it.factorData?.toFloat()
                        FactorType.VOC.value -> voc = it.factorData?.toFloat()
                        FactorType.NOI.value -> noi = it.factorData?.toFloat()
                        FactorType.VELOCITY.value -> velocity = it.factorData?.toFloat()
                        FactorType.WIND_SPEED.value -> windSpeed = it.factorData?.toFloat()
                        FactorType.WIND_DIRECTION.value -> windDirection = it.factorData?.toFloat()
                        FactorType.HEIGHT.value -> height = it.factorData?.toFloat()
                        FactorType.LAT.value -> latitude = it.factorData?.toBigDecimal()
                        FactorType.LNG.value -> longitude = it.factorData?.toBigDecimal()
                        FactorType.TIME.value -> it.statusList?.takeIf { l -> l.isNotEmpty() }?.get(0)?.let { d ->
                            dataTime = SimpleDateFormat("yyyy-MM-dd HH:mm:ss").parse(d)
                        }
                    }
                }
            }
        }
    }
    private fun dataTransform(vo: DataVo, bean: BaseRealTimeData) {
        bean.apply {
            deviceCode = vo.deviceCode
            latitude = vo.lat?.toBigDecimal()
            longitude = vo.lng?.toBigDecimal()
            dataTime = SimpleDateFormat("yyyy-MM-dd HH:mm:ss").parse(vo.time)
            createTime = Date()
            vo.values?.forEach {
                when (it.factorId?.toInt()) {
                    FactorType.NO2.value -> no2 = it.factorData?.toFloat()
                    FactorType.CO.value -> co = it.factorData?.toFloat()
                    FactorType.H2S.value -> h2s = it.factorData?.toFloat()
                    FactorType.SO2.value -> so2 = it.factorData?.toFloat()
                    FactorType.O3.value -> o3 = it.factorData?.toFloat()
                    FactorType.PM25.value -> pm25 = it.factorData?.toFloat()
                    FactorType.PM10.value -> pm10 = it.factorData?.toFloat()
                    FactorType.TEMPERATURE.value -> temperature = it.factorData?.toFloat()
                    FactorType.HUMIDITY.value -> humidity = it.factorData?.toFloat()
                    FactorType.VOC.value -> voc = it.factorData?.toFloat()
                    FactorType.NOI.value -> noi = it.factorData?.toFloat()
                    FactorType.VELOCITY.value -> velocity = it.factorData?.toFloat()
                    FactorType.WIND_SPEED.value -> windSpeed = it.factorData?.toFloat()
                    FactorType.WIND_DIRECTION.value -> windDirection = it.factorData?.toFloat()
                    FactorType.HEIGHT.value -> height = it.factorData?.toFloat()
                }
            }
        }
    }
    private fun calibration(data: BaseRealTimeData, type: UWDeviceType) {
        //1. 校准系数按照一定时间间隔进行刷新
        val now = LocalDateTime.now()
        if (calibrationMap.isEmpty() || now.minusMinutes(cInterval).isAfter(cUpdateTime)) {
            cUpdateTime = now
            calibrationMap[type.value] = mutableMapOf()
            factorCalibrationMapper.selectByExample(Example(FactorCalibration::class.java).apply {
                createCriteria().andEqualTo("deviceType", type.value)
            }).forEach {
                calibrationMap[type.value]?.put(it.factorId, it.factorScale)
            }
        }
        //2. 根据校准系数计算
        calibrationMap[type.value]?.let{
            data.voc = data.voc?.times(it[FactorType.VOC.value] ?: 1f)
            data.co = data.co?.times(it[FactorType.CO.value] ?: 1f)
            data.pm25 = data.pm25?.times(it[FactorType.PM25.value] ?: 1f)
            data.pm10 = data.pm10?.times(it[FactorType.PM10.value] ?: 1f)
            data.no2 = data.no2?.times(it[FactorType.NO2.value] ?: 1f)
            data.h2s = data.h2s?.times(it[FactorType.H2S.value] ?: 1f)
            data.so2 = data.so2?.times(it[FactorType.SO2.value] ?: 1f)
            data.o3 = data.o3?.times(it[FactorType.O3.value] ?: 1f)
        }
    }
}