package com.flightfeather.uav.biz.sourcetrace.model
|
|
import com.flightfeather.uav.common.utils.MapUtil
|
import com.flightfeather.uav.domain.entity.SceneInfo
|
import com.flightfeather.uav.domain.repository.SceneInfoRep
|
import com.flightfeather.uav.lightshare.bean.AreaVo
|
import com.flightfeather.uav.lightshare.bean.SceneInfoVo
|
import com.flightfeather.uav.lightshare.eunm.SceneType
|
import com.flightfeather.uav.socket.eunm.FactorType
|
import org.springframework.beans.BeanUtils
|
import org.springframework.web.context.ContextLoader
|
import kotlin.math.round
|
|
/**
|
* 污染来源
|
* 系统内部的污染场景、电子地图搜索得到的实际路段路口等标志信息
|
* @date 2025/5/27
|
* @author feiyu02
|
*/
|
class PollutedSource {
|
|
/**
|
* 溯源清单显示与临近监测站点的距离(国控、市控、网格化监测点)
|
*
|
*/
|
|
// 溯源企业
|
var sceneList: List<SceneInfoVo?>? = null
|
|
// 溯源推理结论
|
var conclusion: String? = null
|
|
fun searchScenes(pollutedArea: PollutedArea, pollutedData: PollutedData) {
|
ContextLoader.getCurrentWebApplicationContext()?.getBean(SceneInfoRep::class.java)?.run {
|
searchScenes(pollutedArea, this, pollutedData)
|
}
|
}
|
|
/**
|
* 查找系统内部溯源范围内的污染企业
|
*/
|
fun searchScenes(pollutedArea: PollutedArea, sceneInfoRep: SceneInfoRep, pollutedData: PollutedData) {
|
// Fixme 2025.5.14: 污染源的坐标是高德地图坐标系(火星坐标系),而走航数据是WGS84坐标系
|
// 按照区域检索内部污染源信息
|
var result = mutableListOf<SceneInfo>()
|
// 1. 首先按照四至范围从数据库初步筛选污染源,此处的区域坐标已转换为火星坐标系
|
val polygonTmp = pollutedArea.polygon!!
|
val fb = MapUtil.calFourBoundaries(polygonTmp)
|
val sceneList = sceneInfoRep.findByCoordinateRange(fb)
|
// 2. 再精确判断是否在反向溯源区域多边形内部
|
sceneList.forEach {
|
val point = it!!.longitude.toDouble() to it.latitude.toDouble()
|
if (MapUtil.isPointInPolygon(point, polygonTmp)) {
|
result.add(it)
|
}
|
}
|
|
val closePolygonTmp = pollutedArea.closePolygon!!
|
val closeFb = MapUtil.calFourBoundaries(closePolygonTmp)
|
val closeSceneList = sceneInfoRep.findByCoordinateRange(closeFb)
|
// 2. 再精确判断是否在反向溯源区域多边形内部
|
closeSceneList.forEach {
|
val point = it!!.longitude.toDouble() to it.latitude.toDouble()
|
if (MapUtil.isPointInPolygon(point, closePolygonTmp)) {
|
result.add(it)
|
}
|
}
|
|
// 根据污染因子的量级,计算主要的污染场景类型,筛选结果
|
val mainSceneType = calSceneType(pollutedData)
|
if (mainSceneType != null) {
|
this.conclusion = mainSceneType.first
|
result = result.filter {
|
val r = mainSceneType.second.find { s->
|
s.value == it.typeId.toInt()
|
}
|
r != null
|
}.toMutableList()
|
}
|
|
this.sceneList = findClosestStation(sceneInfoRep, result)
|
|
}
|
|
/**
|
* 计算可能的相关污染场景类型以及推理结论
|
*/
|
@Throws(Exception::class)
|
private fun calSceneType(pollutedData: PollutedData): Pair<String, List<SceneType>>? {
|
when (pollutedData.selectedFactor?.main) {
|
// 氮氧化合物,一般由于机动车尾气,同步计算CO
|
FactorType.NO2 -> {
|
val coAvg = round(pollutedData.dataList.map { it.co!! }.average()) / 1000
|
return "氮氧化合物偏高,CO的量级为${coAvg}mg/m³,一般由于机动车尾气造成,污染源以汽修、加油站为主" to
|
listOf(SceneType.TYPE6, SceneType.TYPE10, SceneType.TYPE17)
|
}
|
|
FactorType.CO -> return null
|
|
FactorType.H2S -> return null
|
|
FactorType.SO2 -> return null
|
|
FactorType.O3 -> return null
|
// a) pm2.5、pm10特别高,两者在各情况下同步展示,pm2.5占pm10的比重变化,比重越高,越有可能是餐饮
|
// b) pm10特别高、pm2.5较高,大颗粒扬尘污染,只展示pm10,pm2.5占pm10的比重变化,工地为主
|
FactorType.PM25,
|
FactorType.PM10,
|
-> {
|
val pm25Avg = round(pollutedData.dataList.map { it.pm25!! }.average() * 10) / 10
|
val pm10Avg = round(pollutedData.dataList.map { it.pm10!! }.average() * 10) / 10
|
// 计算异常数据的pm2.5占pm10比重的均值
|
val percentageAvg = pollutedData.dataList.map {
|
it.pm25!! / it.pm10!!
|
}.average()
|
val str =
|
"PM2.5量级为${pm25Avg}μg/m³,PM10量级为${pm25Avg}μg/m³,PM2.5占PM10的比重为${round(percentageAvg * 100)}%"
|
return if (percentageAvg > 0.666) {
|
"${str},比重较大,污染源以餐饮为主,工地次之" to
|
listOf(SceneType.TYPE1, SceneType.TYPE2, SceneType.TYPE3, SceneType.TYPE14, SceneType.TYPE5)
|
} else if (percentageAvg < 0.333) {
|
"${str},比重较小,属于大颗粒扬尘污染,污染源以工地为主" to
|
listOf(SceneType.TYPE1, SceneType.TYPE2, SceneType.TYPE3, SceneType.TYPE14, SceneType.TYPE5)
|
} else {
|
"${str},污染源以餐饮、工地为主" to
|
listOf(SceneType.TYPE1, SceneType.TYPE2, SceneType.TYPE3, SceneType.TYPE14, SceneType.TYPE5)
|
}
|
}
|
// c) VOC较高,同比计算pm2.5的量级,可能存在同步偏高(汽修、加油站), 同步计算O3是否有高值
|
// d) VOC较高,处于加油站(车辆拥堵情况),CO一般较高, 同步计算O3是否有高值
|
FactorType.VOC -> {
|
val pm25Avg = round(pollutedData.dataList.map { it.pm25!! }.average() * 10) / 10
|
val coAvg = round(pollutedData.dataList.map { it.co!! }.average()) / 1000
|
val o3Avg = round(pollutedData.dataList.map { it.o3!! }.average() * 10) / 10
|
return "VOC偏高,同时PM2.5量级为${pm25Avg}μg/m³,CO量级为${coAvg}mg/m³,O3量级为${o3Avg}μg/m³,污染源以汽修、加油站为主" to
|
listOf(SceneType.TYPE6, SceneType.TYPE17, SceneType.TYPE12)
|
}
|
|
else -> return null
|
}
|
}
|
|
/**
|
* 计算最近的监测站点
|
*/
|
private fun findClosestStation(sceneInfoRep: SceneInfoRep, sceneList: List<SceneInfo>): List<SceneInfoVo> {
|
val res1 = sceneInfoRep.findByArea(AreaVo().apply {
|
sceneTypeId = SceneType.TYPE19.value.toString()
|
})
|
|
val res2 = sceneInfoRep.findByArea(AreaVo().apply {
|
sceneTypeId = SceneType.TYPE20.value.toString()
|
})
|
val res = res1.toMutableList().apply { addAll(res2) }
|
|
return sceneList.map {
|
var minLen = -1.0
|
var selectedRes: SceneInfo? = null
|
res.forEach { r ->
|
val dis = MapUtil.getDistance(
|
it.longitude.toDouble(),
|
it.latitude.toDouble(),
|
r!!.longitude.toDouble(),
|
r.latitude.toDouble()
|
)
|
if (minLen < 0 || dis < minLen) {
|
minLen = dis
|
selectedRes = r
|
}
|
}
|
val vo = SceneInfoVo()
|
BeanUtils.copyProperties(it, vo)
|
vo.closestStation = selectedRes
|
vo.length = minLen
|
|
return@map vo
|
}
|
}
|
}
|