1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
| import numpy as np
| import pytest
|
| from pandas import (
| DataFrame,
| MultiIndex,
| Series,
| )
| import pandas._testing as tm
|
|
| @pytest.fixture
| def simple_multiindex_dataframe():
| """
| Factory function to create simple 3 x 3 dataframe with
| both columns and row MultiIndex using supplied data or
| random data by default.
| """
|
| data = np.random.randn(3, 3)
| return DataFrame(
| data, columns=[[2, 2, 4], [6, 8, 10]], index=[[4, 4, 8], [8, 10, 12]]
| )
|
|
| @pytest.mark.parametrize(
| "indexer, expected",
| [
| (
| lambda df: df.iloc[0],
| lambda arr: Series(arr[0], index=[[2, 2, 4], [6, 8, 10]], name=(4, 8)),
| ),
| (
| lambda df: df.iloc[2],
| lambda arr: Series(arr[2], index=[[2, 2, 4], [6, 8, 10]], name=(8, 12)),
| ),
| (
| lambda df: df.iloc[:, 2],
| lambda arr: Series(arr[:, 2], index=[[4, 4, 8], [8, 10, 12]], name=(4, 10)),
| ),
| ],
| )
| def test_iloc_returns_series(indexer, expected, simple_multiindex_dataframe):
| df = simple_multiindex_dataframe
| arr = df.values
| result = indexer(df)
| expected = expected(arr)
| tm.assert_series_equal(result, expected)
|
|
| def test_iloc_returns_dataframe(simple_multiindex_dataframe):
| df = simple_multiindex_dataframe
| result = df.iloc[[0, 1]]
| expected = df.xs(4, drop_level=False)
| tm.assert_frame_equal(result, expected)
|
|
| def test_iloc_returns_scalar(simple_multiindex_dataframe):
| df = simple_multiindex_dataframe
| arr = df.values
| result = df.iloc[2, 2]
| expected = arr[2, 2]
| assert result == expected
|
|
| def test_iloc_getitem_multiple_items():
| # GH 5528
| tup = zip(*[["a", "a", "b", "b"], ["x", "y", "x", "y"]])
| index = MultiIndex.from_tuples(tup)
| df = DataFrame(np.random.randn(4, 4), index=index)
| result = df.iloc[[2, 3]]
| expected = df.xs("b", drop_level=False)
| tm.assert_frame_equal(result, expected)
|
|
| def test_iloc_getitem_labels():
| # this is basically regular indexing
| arr = np.random.randn(4, 3)
| df = DataFrame(
| arr,
| columns=[["i", "i", "j"], ["A", "A", "B"]],
| index=[["i", "i", "j", "k"], ["X", "X", "Y", "Y"]],
| )
| result = df.iloc[2, 2]
| expected = arr[2, 2]
| assert result == expected
|
|
| def test_frame_getitem_slice(multiindex_dataframe_random_data):
| df = multiindex_dataframe_random_data
| result = df.iloc[:4]
| expected = df[:4]
| tm.assert_frame_equal(result, expected)
|
|
| def test_frame_setitem_slice(multiindex_dataframe_random_data):
| df = multiindex_dataframe_random_data
| df.iloc[:4] = 0
|
| assert (df.values[:4] == 0).all()
| assert (df.values[4:] != 0).all()
|
|
| def test_indexing_ambiguity_bug_1678():
| # GH 1678
| columns = MultiIndex.from_tuples(
| [("Ohio", "Green"), ("Ohio", "Red"), ("Colorado", "Green")]
| )
| index = MultiIndex.from_tuples([("a", 1), ("a", 2), ("b", 1), ("b", 2)])
|
| df = DataFrame(np.arange(12).reshape((4, 3)), index=index, columns=columns)
|
| result = df.iloc[:, 1]
| expected = df.loc[:, ("Ohio", "Red")]
| tm.assert_series_equal(result, expected)
|
|
| def test_iloc_integer_locations():
| # GH 13797
| data = [
| ["str00", "str01"],
| ["str10", "str11"],
| ["str20", "srt21"],
| ["str30", "str31"],
| ["str40", "str41"],
| ]
|
| index = MultiIndex.from_tuples(
| [("CC", "A"), ("CC", "B"), ("CC", "B"), ("BB", "a"), ("BB", "b")]
| )
|
| expected = DataFrame(data)
| df = DataFrame(data, index=index)
|
| result = DataFrame([[df.iloc[r, c] for c in range(2)] for r in range(5)])
|
| tm.assert_frame_equal(result, expected)
|
|
| @pytest.mark.parametrize(
| "data, indexes, values, expected_k",
| [
| # test without indexer value in first level of MultiIndex
| ([[2, 22, 5], [2, 33, 6]], [0, -1, 1], [2, 3, 1], [7, 10]),
| # test like code sample 1 in the issue
| ([[1, 22, 555], [1, 33, 666]], [0, -1, 1], [200, 300, 100], [755, 1066]),
| # test like code sample 2 in the issue
| ([[1, 3, 7], [2, 4, 8]], [0, -1, 1], [10, 10, 1000], [17, 1018]),
| # test like code sample 3 in the issue
| ([[1, 11, 4], [2, 22, 5], [3, 33, 6]], [0, -1, 1], [4, 7, 10], [8, 15, 13]),
| ],
| )
| def test_iloc_setitem_int_multiindex_series(data, indexes, values, expected_k):
| # GH17148
| df = DataFrame(data=data, columns=["i", "j", "k"])
| df = df.set_index(["i", "j"])
|
| series = df.k.copy()
| for i, v in zip(indexes, values):
| series.iloc[i] += v
|
| df["k"] = expected_k
| expected = df.k
| tm.assert_series_equal(series, expected)
|
|
| def test_getitem_iloc(multiindex_dataframe_random_data):
| df = multiindex_dataframe_random_data
| result = df.iloc[2]
| expected = df.xs(df.index[2])
| tm.assert_series_equal(result, expected)
|
|