1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import numpy as np
import pytest
 
import pandas as pd
from pandas import (
    DataFrame,
    Series,
    Timestamp,
    date_range,
)
import pandas._testing as tm
 
 
class TestDataFrameDiff:
    def test_diff_requires_integer(self):
        df = DataFrame(np.random.randn(2, 2))
        with pytest.raises(ValueError, match="periods must be an integer"):
            df.diff(1.5)
 
    # GH#44572 np.int64 is accepted
    @pytest.mark.parametrize("num", [1, np.int64(1)])
    def test_diff(self, datetime_frame, num):
        df = datetime_frame
        the_diff = df.diff(num)
 
        expected = df["A"] - df["A"].shift(num)
        tm.assert_series_equal(the_diff["A"], expected)
 
    def test_diff_int_dtype(self):
        # int dtype
        a = 10_000_000_000_000_000
        b = a + 1
        ser = Series([a, b])
 
        rs = DataFrame({"s": ser}).diff()
        assert rs.s[1] == 1
 
    def test_diff_mixed_numeric(self, datetime_frame):
        # mixed numeric
        tf = datetime_frame.astype("float32")
        the_diff = tf.diff(1)
        tm.assert_series_equal(the_diff["A"], tf["A"] - tf["A"].shift(1))
 
    def test_diff_axis1_nonconsolidated(self):
        # GH#10907
        df = DataFrame({"y": Series([2]), "z": Series([3])})
        df.insert(0, "x", 1)
        result = df.diff(axis=1)
        expected = DataFrame({"x": np.nan, "y": Series(1), "z": Series(1)})
        tm.assert_frame_equal(result, expected)
 
    def test_diff_timedelta64_with_nat(self):
        # GH#32441
        arr = np.arange(6).reshape(3, 2).astype("timedelta64[ns]")
        arr[:, 0] = np.timedelta64("NaT", "ns")
 
        df = DataFrame(arr)
        result = df.diff(1, axis=0)
 
        expected = DataFrame({0: df[0], 1: [pd.NaT, pd.Timedelta(2), pd.Timedelta(2)]})
        tm.assert_equal(result, expected)
 
        result = df.diff(0)
        expected = df - df
        assert expected[0].isna().all()
        tm.assert_equal(result, expected)
 
        result = df.diff(-1, axis=1)
        expected = df * np.nan
        tm.assert_equal(result, expected)
 
    @pytest.mark.parametrize("tz", [None, "UTC"])
    def test_diff_datetime_axis0_with_nat(self, tz):
        # GH#32441
        dti = pd.DatetimeIndex(["NaT", "2019-01-01", "2019-01-02"], tz=tz)
        ser = Series(dti)
 
        df = ser.to_frame()
 
        result = df.diff()
        ex_index = pd.TimedeltaIndex([pd.NaT, pd.NaT, pd.Timedelta(days=1)])
        expected = Series(ex_index).to_frame()
        tm.assert_frame_equal(result, expected)
 
    @pytest.mark.parametrize("tz", [None, "UTC"])
    def test_diff_datetime_with_nat_zero_periods(self, tz):
        # diff on NaT values should give NaT, not timedelta64(0)
        dti = date_range("2016-01-01", periods=4, tz=tz)
        ser = Series(dti)
        df = ser.to_frame()
 
        df[1] = ser.copy()
 
        df.iloc[:, 0] = pd.NaT
 
        expected = df - df
        assert expected[0].isna().all()
 
        result = df.diff(0, axis=0)
        tm.assert_frame_equal(result, expected)
 
        result = df.diff(0, axis=1)
        tm.assert_frame_equal(result, expected)
 
    @pytest.mark.parametrize("tz", [None, "UTC"])
    def test_diff_datetime_axis0(self, tz):
        # GH#18578
        df = DataFrame(
            {
                0: date_range("2010", freq="D", periods=2, tz=tz),
                1: date_range("2010", freq="D", periods=2, tz=tz),
            }
        )
 
        result = df.diff(axis=0)
        expected = DataFrame(
            {
                0: pd.TimedeltaIndex(["NaT", "1 days"]),
                1: pd.TimedeltaIndex(["NaT", "1 days"]),
            }
        )
        tm.assert_frame_equal(result, expected)
 
    @pytest.mark.parametrize("tz", [None, "UTC"])
    def test_diff_datetime_axis1(self, tz):
        # GH#18578
        df = DataFrame(
            {
                0: date_range("2010", freq="D", periods=2, tz=tz),
                1: date_range("2010", freq="D", periods=2, tz=tz),
            }
        )
 
        result = df.diff(axis=1)
        expected = DataFrame(
            {
                0: pd.TimedeltaIndex(["NaT", "NaT"]),
                1: pd.TimedeltaIndex(["0 days", "0 days"]),
            }
        )
        tm.assert_frame_equal(result, expected)
 
    def test_diff_timedelta(self):
        # GH#4533
        df = DataFrame(
            {
                "time": [Timestamp("20130101 9:01"), Timestamp("20130101 9:02")],
                "value": [1.0, 2.0],
            }
        )
 
        res = df.diff()
        exp = DataFrame(
            [[pd.NaT, np.nan], [pd.Timedelta("00:01:00"), 1]], columns=["time", "value"]
        )
        tm.assert_frame_equal(res, exp)
 
    def test_diff_mixed_dtype(self):
        df = DataFrame(np.random.randn(5, 3))
        df["A"] = np.array([1, 2, 3, 4, 5], dtype=object)
 
        result = df.diff()
        assert result[0].dtype == np.float64
 
    def test_diff_neg_n(self, datetime_frame):
        rs = datetime_frame.diff(-1)
        xp = datetime_frame - datetime_frame.shift(-1)
        tm.assert_frame_equal(rs, xp)
 
    def test_diff_float_n(self, datetime_frame):
        rs = datetime_frame.diff(1.0)
        xp = datetime_frame.diff(1)
        tm.assert_frame_equal(rs, xp)
 
    def test_diff_axis(self):
        # GH#9727
        df = DataFrame([[1.0, 2.0], [3.0, 4.0]])
        tm.assert_frame_equal(
            df.diff(axis=1), DataFrame([[np.nan, 1.0], [np.nan, 1.0]])
        )
        tm.assert_frame_equal(
            df.diff(axis=0), DataFrame([[np.nan, np.nan], [2.0, 2.0]])
        )
 
    def test_diff_period(self):
        # GH#32995 Don't pass an incorrect axis
        pi = date_range("2016-01-01", periods=3).to_period("D")
        df = DataFrame({"A": pi})
 
        result = df.diff(1, axis=1)
 
        expected = (df - pd.NaT).astype(object)
        tm.assert_frame_equal(result, expected)
 
    def test_diff_axis1_mixed_dtypes(self):
        # GH#32995 operate column-wise when we have mixed dtypes and axis=1
        df = DataFrame({"A": range(3), "B": 2 * np.arange(3, dtype=np.float64)})
 
        expected = DataFrame({"A": [np.nan, np.nan, np.nan], "B": df["B"] / 2})
 
        result = df.diff(axis=1)
        tm.assert_frame_equal(result, expected)
 
        # GH#21437 mixed-float-dtypes
        df = DataFrame(
            {"a": np.arange(3, dtype="float32"), "b": np.arange(3, dtype="float64")}
        )
        result = df.diff(axis=1)
        expected = DataFrame({"a": df["a"] * np.nan, "b": df["b"] * 0})
        tm.assert_frame_equal(result, expected)
 
    def test_diff_axis1_mixed_dtypes_large_periods(self):
        # GH#32995 operate column-wise when we have mixed dtypes and axis=1
        df = DataFrame({"A": range(3), "B": 2 * np.arange(3, dtype=np.float64)})
 
        expected = df * np.nan
 
        result = df.diff(axis=1, periods=3)
        tm.assert_frame_equal(result, expected)
 
    def test_diff_axis1_mixed_dtypes_negative_periods(self):
        # GH#32995 operate column-wise when we have mixed dtypes and axis=1
        df = DataFrame({"A": range(3), "B": 2 * np.arange(3, dtype=np.float64)})
 
        expected = DataFrame({"A": -1.0 * df["A"], "B": df["B"] * np.nan})
 
        result = df.diff(axis=1, periods=-1)
        tm.assert_frame_equal(result, expected)
 
    def test_diff_sparse(self):
        # GH#28813 .diff() should work for sparse dataframes as well
        sparse_df = DataFrame([[0, 1], [1, 0]], dtype="Sparse[int]")
 
        result = sparse_df.diff()
        expected = DataFrame(
            [[np.nan, np.nan], [1.0, -1.0]], dtype=pd.SparseDtype("float", 0.0)
        )
 
        tm.assert_frame_equal(result, expected)
 
    @pytest.mark.parametrize(
        "axis,expected",
        [
            (
                0,
                DataFrame(
                    {
                        "a": [np.nan, 0, 1, 0, np.nan, np.nan, np.nan, 0],
                        "b": [np.nan, 1, np.nan, np.nan, -2, 1, np.nan, np.nan],
                        "c": np.repeat(np.nan, 8),
                        "d": [np.nan, 3, 5, 7, 9, 11, 13, 15],
                    },
                    dtype="Int64",
                ),
            ),
            (
                1,
                DataFrame(
                    {
                        "a": np.repeat(np.nan, 8),
                        "b": [0, 1, np.nan, 1, np.nan, np.nan, np.nan, 0],
                        "c": np.repeat(np.nan, 8),
                        "d": np.repeat(np.nan, 8),
                    },
                    dtype="Int64",
                ),
            ),
        ],
    )
    def test_diff_integer_na(self, axis, expected):
        # GH#24171 IntegerNA Support for DataFrame.diff()
        df = DataFrame(
            {
                "a": np.repeat([0, 1, np.nan, 2], 2),
                "b": np.tile([0, 1, np.nan, 2], 2),
                "c": np.repeat(np.nan, 8),
                "d": np.arange(1, 9) ** 2,
            },
            dtype="Int64",
        )
 
        # Test case for default behaviour of diff
        result = df.diff(axis=axis)
        tm.assert_frame_equal(result, expected)
 
    def test_diff_readonly(self):
        # https://github.com/pandas-dev/pandas/issues/35559
        arr = np.random.randn(5, 2)
        arr.flags.writeable = False
        df = DataFrame(arr)
        result = df.diff()
        expected = DataFrame(np.array(df)).diff()
        tm.assert_frame_equal(result, expected)
 
    def test_diff_all_int_dtype(self, any_int_numpy_dtype):
        # GH 14773
        df = DataFrame(range(5))
        df = df.astype(any_int_numpy_dtype)
        result = df.diff()
        expected_dtype = (
            "float32" if any_int_numpy_dtype in ("int8", "int16") else "float64"
        )
        expected = DataFrame([np.nan, 1.0, 1.0, 1.0, 1.0], dtype=expected_dtype)
        tm.assert_frame_equal(result, expected)