1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
from __future__ import annotations
 
from typing import Any
 
import numpy as np
import pytest
 
import pandas as pd
import pandas._testing as tm
 
# integer dtypes
arrays = [pd.array([1, 2, 3, None], dtype=dtype) for dtype in tm.ALL_INT_EA_DTYPES]
scalars: list[Any] = [2] * len(arrays)
# floating dtypes
arrays += [pd.array([0.1, 0.2, 0.3, None], dtype=dtype) for dtype in tm.FLOAT_EA_DTYPES]
scalars += [0.2, 0.2]
# boolean
arrays += [pd.array([True, False, True, None], dtype="boolean")]
scalars += [False]
 
 
@pytest.fixture(params=zip(arrays, scalars), ids=[a.dtype.name for a in arrays])
def data(request):
    """Fixture returning parametrized (array, scalar) tuple.
 
    Used to test equivalence of scalars, numpy arrays with array ops, and the
    equivalence of DataFrame and Series ops.
    """
    return request.param
 
 
def check_skip(data, op_name):
    if isinstance(data.dtype, pd.BooleanDtype) and "sub" in op_name:
        pytest.skip("subtract not implemented for boolean")
 
 
def is_bool_not_implemented(data, op_name):
    # match non-masked behavior
    return data.dtype.kind == "b" and op_name.strip("_").lstrip("r") in [
        "pow",
        "truediv",
        "floordiv",
    ]
 
 
# Test equivalence of scalars, numpy arrays with array ops
# -----------------------------------------------------------------------------
 
 
def test_array_scalar_like_equivalence(data, all_arithmetic_operators):
    data, scalar = data
    op = tm.get_op_from_name(all_arithmetic_operators)
    check_skip(data, all_arithmetic_operators)
 
    scalar_array = pd.array([scalar] * len(data), dtype=data.dtype)
 
    # TODO also add len-1 array (np.array([scalar], dtype=data.dtype.numpy_dtype))
    for scalar in [scalar, data.dtype.type(scalar)]:
        if is_bool_not_implemented(data, all_arithmetic_operators):
            msg = "operator '.*' not implemented for bool dtypes"
            with pytest.raises(NotImplementedError, match=msg):
                op(data, scalar)
            with pytest.raises(NotImplementedError, match=msg):
                op(data, scalar_array)
        else:
            result = op(data, scalar)
            expected = op(data, scalar_array)
            tm.assert_extension_array_equal(result, expected)
 
 
def test_array_NA(data, all_arithmetic_operators):
    data, _ = data
    op = tm.get_op_from_name(all_arithmetic_operators)
    check_skip(data, all_arithmetic_operators)
 
    scalar = pd.NA
    scalar_array = pd.array([pd.NA] * len(data), dtype=data.dtype)
 
    mask = data._mask.copy()
 
    if is_bool_not_implemented(data, all_arithmetic_operators):
        msg = "operator '.*' not implemented for bool dtypes"
        with pytest.raises(NotImplementedError, match=msg):
            op(data, scalar)
        # GH#45421 check op doesn't alter data._mask inplace
        tm.assert_numpy_array_equal(mask, data._mask)
        return
 
    result = op(data, scalar)
    # GH#45421 check op doesn't alter data._mask inplace
    tm.assert_numpy_array_equal(mask, data._mask)
 
    expected = op(data, scalar_array)
    tm.assert_numpy_array_equal(mask, data._mask)
 
    tm.assert_extension_array_equal(result, expected)
 
 
def test_numpy_array_equivalence(data, all_arithmetic_operators):
    data, scalar = data
    op = tm.get_op_from_name(all_arithmetic_operators)
    check_skip(data, all_arithmetic_operators)
 
    numpy_array = np.array([scalar] * len(data), dtype=data.dtype.numpy_dtype)
    pd_array = pd.array(numpy_array, dtype=data.dtype)
 
    if is_bool_not_implemented(data, all_arithmetic_operators):
        msg = "operator '.*' not implemented for bool dtypes"
        with pytest.raises(NotImplementedError, match=msg):
            op(data, numpy_array)
        with pytest.raises(NotImplementedError, match=msg):
            op(data, pd_array)
        return
 
    result = op(data, numpy_array)
    expected = op(data, pd_array)
    tm.assert_extension_array_equal(result, expected)
 
 
# Test equivalence with Series and DataFrame ops
# -----------------------------------------------------------------------------
 
 
def test_frame(data, all_arithmetic_operators):
    data, scalar = data
    op = tm.get_op_from_name(all_arithmetic_operators)
    check_skip(data, all_arithmetic_operators)
 
    # DataFrame with scalar
    df = pd.DataFrame({"A": data})
 
    if is_bool_not_implemented(data, all_arithmetic_operators):
        msg = "operator '.*' not implemented for bool dtypes"
        with pytest.raises(NotImplementedError, match=msg):
            op(df, scalar)
        with pytest.raises(NotImplementedError, match=msg):
            op(data, scalar)
        return
 
    result = op(df, scalar)
    expected = pd.DataFrame({"A": op(data, scalar)})
    tm.assert_frame_equal(result, expected)
 
 
def test_series(data, all_arithmetic_operators):
    data, scalar = data
    op = tm.get_op_from_name(all_arithmetic_operators)
    check_skip(data, all_arithmetic_operators)
 
    ser = pd.Series(data)
 
    others = [
        scalar,
        np.array([scalar] * len(data), dtype=data.dtype.numpy_dtype),
        pd.array([scalar] * len(data), dtype=data.dtype),
        pd.Series([scalar] * len(data), dtype=data.dtype),
    ]
 
    for other in others:
        if is_bool_not_implemented(data, all_arithmetic_operators):
            msg = "operator '.*' not implemented for bool dtypes"
            with pytest.raises(NotImplementedError, match=msg):
                op(ser, other)
 
        else:
            result = op(ser, other)
            expected = pd.Series(op(data, other))
            tm.assert_series_equal(result, expected)
 
 
# Test generic characteristics / errors
# -----------------------------------------------------------------------------
 
 
def test_error_invalid_object(data, all_arithmetic_operators):
    data, _ = data
 
    op = all_arithmetic_operators
    opa = getattr(data, op)
 
    # 2d -> return NotImplemented
    result = opa(pd.DataFrame({"A": data}))
    assert result is NotImplemented
 
    msg = r"can only perform ops with 1-d structures"
    with pytest.raises(NotImplementedError, match=msg):
        opa(np.arange(len(data)).reshape(-1, len(data)))
 
 
def test_error_len_mismatch(data, all_arithmetic_operators):
    # operating with a list-like with non-matching length raises
    data, scalar = data
    op = tm.get_op_from_name(all_arithmetic_operators)
 
    other = [scalar] * (len(data) - 1)
 
    err = ValueError
    msg = "|".join(
        [
            r"operands could not be broadcast together with shapes \(3,\) \(4,\)",
            r"operands could not be broadcast together with shapes \(4,\) \(3,\)",
        ]
    )
    if data.dtype.kind == "b" and all_arithmetic_operators.strip("_") in [
        "sub",
        "rsub",
    ]:
        err = TypeError
        msg = (
            r"numpy boolean subtract, the `\-` operator, is not supported, use "
            r"the bitwise_xor, the `\^` operator, or the logical_xor function instead"
        )
    elif is_bool_not_implemented(data, all_arithmetic_operators):
        msg = "operator '.*' not implemented for bool dtypes"
        err = NotImplementedError
 
    for other in [other, np.array(other)]:
        with pytest.raises(err, match=msg):
            op(data, other)
 
        s = pd.Series(data)
        with pytest.raises(err, match=msg):
            op(s, other)
 
 
@pytest.mark.parametrize("op", ["__neg__", "__abs__", "__invert__"])
def test_unary_op_does_not_propagate_mask(data, op):
    # https://github.com/pandas-dev/pandas/issues/39943
    data, _ = data
    ser = pd.Series(data)
 
    if op == "__invert__" and data.dtype.kind == "f":
        # we follow numpy in raising
        msg = "ufunc 'invert' not supported for the input types"
        with pytest.raises(TypeError, match=msg):
            getattr(ser, op)()
        with pytest.raises(TypeError, match=msg):
            getattr(data, op)()
        with pytest.raises(TypeError, match=msg):
            # Check that this is still the numpy behavior
            getattr(data._data, op)()
 
        return
 
    result = getattr(ser, op)()
    expected = result.copy(deep=True)
    ser[0] = None
    tm.assert_series_equal(result, expected)