1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
import numpy as np
import pytest
 
import pandas.util._test_decorators as td
 
import pandas as pd
from pandas import (
    Index,
    Interval,
    IntervalIndex,
    Timedelta,
    Timestamp,
    date_range,
    timedelta_range,
)
import pandas._testing as tm
from pandas.core.arrays import IntervalArray
 
 
@pytest.fixture(
    params=[
        (Index([0, 2, 4]), Index([1, 3, 5])),
        (Index([0.0, 1.0, 2.0]), Index([1.0, 2.0, 3.0])),
        (timedelta_range("0 days", periods=3), timedelta_range("1 day", periods=3)),
        (date_range("20170101", periods=3), date_range("20170102", periods=3)),
        (
            date_range("20170101", periods=3, tz="US/Eastern"),
            date_range("20170102", periods=3, tz="US/Eastern"),
        ),
    ],
    ids=lambda x: str(x[0].dtype),
)
def left_right_dtypes(request):
    """
    Fixture for building an IntervalArray from various dtypes
    """
    return request.param
 
 
class TestAttributes:
    @pytest.mark.parametrize(
        "left, right",
        [
            (0, 1),
            (Timedelta("0 days"), Timedelta("1 day")),
            (Timestamp("2018-01-01"), Timestamp("2018-01-02")),
            (
                Timestamp("2018-01-01", tz="US/Eastern"),
                Timestamp("2018-01-02", tz="US/Eastern"),
            ),
        ],
    )
    @pytest.mark.parametrize("constructor", [IntervalArray, IntervalIndex])
    def test_is_empty(self, constructor, left, right, closed):
        # GH27219
        tuples = [(left, left), (left, right), np.nan]
        expected = np.array([closed != "both", False, False])
        result = constructor.from_tuples(tuples, closed=closed).is_empty
        tm.assert_numpy_array_equal(result, expected)
 
 
class TestMethods:
    @pytest.mark.parametrize("new_closed", ["left", "right", "both", "neither"])
    def test_set_closed(self, closed, new_closed):
        # GH 21670
        array = IntervalArray.from_breaks(range(10), closed=closed)
        result = array.set_closed(new_closed)
        expected = IntervalArray.from_breaks(range(10), closed=new_closed)
        tm.assert_extension_array_equal(result, expected)
 
    @pytest.mark.parametrize(
        "other",
        [
            Interval(0, 1, closed="right"),
            IntervalArray.from_breaks([1, 2, 3, 4], closed="right"),
        ],
    )
    def test_where_raises(self, other):
        # GH#45768 The IntervalArray methods raises; the Series method coerces
        ser = pd.Series(IntervalArray.from_breaks([1, 2, 3, 4], closed="left"))
        mask = np.array([True, False, True])
        match = "'value.closed' is 'right', expected 'left'."
        with pytest.raises(ValueError, match=match):
            ser.array._where(mask, other)
 
        res = ser.where(mask, other=other)
        expected = ser.astype(object).where(mask, other)
        tm.assert_series_equal(res, expected)
 
    def test_shift(self):
        # https://github.com/pandas-dev/pandas/issues/31495, GH#22428, GH#31502
        a = IntervalArray.from_breaks([1, 2, 3])
        result = a.shift()
        # int -> float
        expected = IntervalArray.from_tuples([(np.nan, np.nan), (1.0, 2.0)])
        tm.assert_interval_array_equal(result, expected)
 
        msg = "can only insert Interval objects and NA into an IntervalArray"
        with pytest.raises(TypeError, match=msg):
            a.shift(1, fill_value=pd.NaT)
 
    def test_shift_datetime(self):
        # GH#31502, GH#31504
        a = IntervalArray.from_breaks(date_range("2000", periods=4))
        result = a.shift(2)
        expected = a.take([-1, -1, 0], allow_fill=True)
        tm.assert_interval_array_equal(result, expected)
 
        result = a.shift(-1)
        expected = a.take([1, 2, -1], allow_fill=True)
        tm.assert_interval_array_equal(result, expected)
 
        msg = "can only insert Interval objects and NA into an IntervalArray"
        with pytest.raises(TypeError, match=msg):
            a.shift(1, fill_value=np.timedelta64("NaT", "ns"))
 
 
class TestSetitem:
    def test_set_na(self, left_right_dtypes):
        left, right = left_right_dtypes
        left = left.copy(deep=True)
        right = right.copy(deep=True)
        result = IntervalArray.from_arrays(left, right)
 
        if result.dtype.subtype.kind not in ["m", "M"]:
            msg = "'value' should be an interval type, got <.*NaTType'> instead."
            with pytest.raises(TypeError, match=msg):
                result[0] = pd.NaT
        if result.dtype.subtype.kind in ["i", "u"]:
            msg = "Cannot set float NaN to integer-backed IntervalArray"
            # GH#45484 TypeError, not ValueError, matches what we get with
            # non-NA un-holdable value.
            with pytest.raises(TypeError, match=msg):
                result[0] = np.NaN
            return
 
        result[0] = np.nan
 
        expected_left = Index([left._na_value] + list(left[1:]))
        expected_right = Index([right._na_value] + list(right[1:]))
        expected = IntervalArray.from_arrays(expected_left, expected_right)
 
        tm.assert_extension_array_equal(result, expected)
 
    def test_setitem_mismatched_closed(self):
        arr = IntervalArray.from_breaks(range(4))
        orig = arr.copy()
        other = arr.set_closed("both")
 
        msg = "'value.closed' is 'both', expected 'right'"
        with pytest.raises(ValueError, match=msg):
            arr[0] = other[0]
        with pytest.raises(ValueError, match=msg):
            arr[:1] = other[:1]
        with pytest.raises(ValueError, match=msg):
            arr[:0] = other[:0]
        with pytest.raises(ValueError, match=msg):
            arr[:] = other[::-1]
        with pytest.raises(ValueError, match=msg):
            arr[:] = list(other[::-1])
        with pytest.raises(ValueError, match=msg):
            arr[:] = other[::-1].astype(object)
        with pytest.raises(ValueError, match=msg):
            arr[:] = other[::-1].astype("category")
 
        # empty list should be no-op
        arr[:0] = []
        tm.assert_interval_array_equal(arr, orig)
 
 
def test_repr():
    # GH 25022
    arr = IntervalArray.from_tuples([(0, 1), (1, 2)])
    result = repr(arr)
    expected = (
        "<IntervalArray>\n"
        "[(0, 1], (1, 2]]\n"
        "Length: 2, dtype: interval[int64, right]"
    )
    assert result == expected
 
 
class TestReductions:
    def test_min_max_invalid_axis(self, left_right_dtypes):
        left, right = left_right_dtypes
        left = left.copy(deep=True)
        right = right.copy(deep=True)
        arr = IntervalArray.from_arrays(left, right)
 
        msg = "`axis` must be fewer than the number of dimensions"
        for axis in [-2, 1]:
            with pytest.raises(ValueError, match=msg):
                arr.min(axis=axis)
            with pytest.raises(ValueError, match=msg):
                arr.max(axis=axis)
 
        msg = "'>=' not supported between"
        with pytest.raises(TypeError, match=msg):
            arr.min(axis="foo")
        with pytest.raises(TypeError, match=msg):
            arr.max(axis="foo")
 
    def test_min_max(self, left_right_dtypes, index_or_series_or_array):
        # GH#44746
        left, right = left_right_dtypes
        left = left.copy(deep=True)
        right = right.copy(deep=True)
        arr = IntervalArray.from_arrays(left, right)
 
        # The expected results below are only valid if monotonic
        assert left.is_monotonic_increasing
        assert Index(arr).is_monotonic_increasing
 
        MIN = arr[0]
        MAX = arr[-1]
 
        indexer = np.arange(len(arr))
        np.random.shuffle(indexer)
        arr = arr.take(indexer)
 
        arr_na = arr.insert(2, np.nan)
 
        arr = index_or_series_or_array(arr)
        arr_na = index_or_series_or_array(arr_na)
 
        for skipna in [True, False]:
            res = arr.min(skipna=skipna)
            assert res == MIN
            assert type(res) == type(MIN)
 
            res = arr.max(skipna=skipna)
            assert res == MAX
            assert type(res) == type(MAX)
 
        res = arr_na.min(skipna=False)
        assert np.isnan(res)
        res = arr_na.max(skipna=False)
        assert np.isnan(res)
 
        res = arr_na.min(skipna=True)
        assert res == MIN
        assert type(res) == type(MIN)
        res = arr_na.max(skipna=True)
        assert res == MAX
        assert type(res) == type(MAX)
 
 
# ----------------------------------------------------------------------------
# Arrow interaction
 
 
pyarrow_skip = td.skip_if_no("pyarrow")
 
 
@pyarrow_skip
def test_arrow_extension_type():
    import pyarrow as pa
 
    from pandas.core.arrays.arrow.extension_types import ArrowIntervalType
 
    p1 = ArrowIntervalType(pa.int64(), "left")
    p2 = ArrowIntervalType(pa.int64(), "left")
    p3 = ArrowIntervalType(pa.int64(), "right")
 
    assert p1.closed == "left"
    assert p1 == p2
    assert p1 != p3
    assert hash(p1) == hash(p2)
    assert hash(p1) != hash(p3)
 
 
@pyarrow_skip
def test_arrow_array():
    import pyarrow as pa
 
    from pandas.core.arrays.arrow.extension_types import ArrowIntervalType
 
    intervals = pd.interval_range(1, 5, freq=1).array
 
    result = pa.array(intervals)
    assert isinstance(result.type, ArrowIntervalType)
    assert result.type.closed == intervals.closed
    assert result.type.subtype == pa.int64()
    assert result.storage.field("left").equals(pa.array([1, 2, 3, 4], type="int64"))
    assert result.storage.field("right").equals(pa.array([2, 3, 4, 5], type="int64"))
 
    expected = pa.array([{"left": i, "right": i + 1} for i in range(1, 5)])
    assert result.storage.equals(expected)
 
    # convert to its storage type
    result = pa.array(intervals, type=expected.type)
    assert result.equals(expected)
 
    # unsupported conversions
    with pytest.raises(TypeError, match="Not supported to convert IntervalArray"):
        pa.array(intervals, type="float64")
 
    with pytest.raises(TypeError, match="Not supported to convert IntervalArray"):
        pa.array(intervals, type=ArrowIntervalType(pa.float64(), "left"))
 
 
@pyarrow_skip
def test_arrow_array_missing():
    import pyarrow as pa
 
    from pandas.core.arrays.arrow.extension_types import ArrowIntervalType
 
    arr = IntervalArray.from_breaks([0.0, 1.0, 2.0, 3.0])
    arr[1] = None
 
    result = pa.array(arr)
    assert isinstance(result.type, ArrowIntervalType)
    assert result.type.closed == arr.closed
    assert result.type.subtype == pa.float64()
 
    # fields have missing values (not NaN)
    left = pa.array([0.0, None, 2.0], type="float64")
    right = pa.array([1.0, None, 3.0], type="float64")
    assert result.storage.field("left").equals(left)
    assert result.storage.field("right").equals(right)
 
    # structarray itself also has missing values on the array level
    vals = [
        {"left": 0.0, "right": 1.0},
        {"left": None, "right": None},
        {"left": 2.0, "right": 3.0},
    ]
    expected = pa.StructArray.from_pandas(vals, mask=np.array([False, True, False]))
    assert result.storage.equals(expected)
 
 
@pyarrow_skip
@pytest.mark.parametrize(
    "breaks",
    [[0.0, 1.0, 2.0, 3.0], date_range("2017", periods=4, freq="D")],
    ids=["float", "datetime64[ns]"],
)
def test_arrow_table_roundtrip(breaks):
    import pyarrow as pa
 
    from pandas.core.arrays.arrow.extension_types import ArrowIntervalType
 
    arr = IntervalArray.from_breaks(breaks)
    arr[1] = None
    df = pd.DataFrame({"a": arr})
 
    table = pa.table(df)
    assert isinstance(table.field("a").type, ArrowIntervalType)
    result = table.to_pandas()
    assert isinstance(result["a"].dtype, pd.IntervalDtype)
    tm.assert_frame_equal(result, df)
 
    table2 = pa.concat_tables([table, table])
    result = table2.to_pandas()
    expected = pd.concat([df, df], ignore_index=True)
    tm.assert_frame_equal(result, expected)
 
    # GH-41040
    table = pa.table(
        [pa.chunked_array([], type=table.column(0).type)], schema=table.schema
    )
    result = table.to_pandas()
    tm.assert_frame_equal(result, expected[0:0])
 
 
@pyarrow_skip
@pytest.mark.parametrize(
    "breaks",
    [[0.0, 1.0, 2.0, 3.0], date_range("2017", periods=4, freq="D")],
    ids=["float", "datetime64[ns]"],
)
def test_arrow_table_roundtrip_without_metadata(breaks):
    import pyarrow as pa
 
    arr = IntervalArray.from_breaks(breaks)
    arr[1] = None
    df = pd.DataFrame({"a": arr})
 
    table = pa.table(df)
    # remove the metadata
    table = table.replace_schema_metadata()
    assert table.schema.metadata is None
 
    result = table.to_pandas()
    assert isinstance(result["a"].dtype, pd.IntervalDtype)
    tm.assert_frame_equal(result, df)
 
 
@pyarrow_skip
def test_from_arrow_from_raw_struct_array():
    # in case pyarrow lost the Interval extension type (eg on parquet roundtrip
    # with datetime64[ns] subtype, see GH-45881), still allow conversion
    # from arrow to IntervalArray
    import pyarrow as pa
 
    arr = pa.array([{"left": 0, "right": 1}, {"left": 1, "right": 2}])
    dtype = pd.IntervalDtype(np.dtype("int64"), closed="neither")
 
    result = dtype.__from_arrow__(arr)
    expected = IntervalArray.from_breaks(
        np.array([0, 1, 2], dtype="int64"), closed="neither"
    )
    tm.assert_extension_array_equal(result, expected)
 
    result = dtype.__from_arrow__(pa.chunked_array([arr]))
    tm.assert_extension_array_equal(result, expected)
 
 
@pytest.mark.parametrize("timezone", ["UTC", "US/Pacific", "GMT"])
def test_interval_index_subtype(timezone, inclusive_endpoints_fixture):
    # GH 46999
    dates = date_range("2022", periods=3, tz=timezone)
    dtype = f"interval[datetime64[ns, {timezone}], {inclusive_endpoints_fixture}]"
    result = IntervalIndex.from_arrays(
        ["2022-01-01", "2022-01-02"],
        ["2022-01-02", "2022-01-03"],
        closed=inclusive_endpoints_fixture,
        dtype=dtype,
    )
    expected = IntervalIndex.from_arrays(
        dates[:-1], dates[1:], closed=inclusive_endpoints_fixture
    )
    tm.assert_index_equal(result, expected)