1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import operator
 
import numpy as np
import pytest
 
import pandas as pd
import pandas._testing as tm
from pandas.core.arrays import FloatingArray
 
# Basic test for the arithmetic array ops
# -----------------------------------------------------------------------------
 
 
@pytest.mark.parametrize(
    "opname, exp",
    [
        ("add", [1.1, 2.2, None, None, 5.5]),
        ("mul", [0.1, 0.4, None, None, 2.5]),
        ("sub", [0.9, 1.8, None, None, 4.5]),
        ("truediv", [10.0, 10.0, None, None, 10.0]),
        ("floordiv", [9.0, 9.0, None, None, 10.0]),
        ("mod", [0.1, 0.2, None, None, 0.0]),
    ],
    ids=["add", "mul", "sub", "div", "floordiv", "mod"],
)
def test_array_op(dtype, opname, exp):
    a = pd.array([1.0, 2.0, None, 4.0, 5.0], dtype=dtype)
    b = pd.array([0.1, 0.2, 0.3, None, 0.5], dtype=dtype)
 
    op = getattr(operator, opname)
 
    result = op(a, b)
    expected = pd.array(exp, dtype=dtype)
    tm.assert_extension_array_equal(result, expected)
 
 
@pytest.mark.parametrize("zero, negative", [(0, False), (0.0, False), (-0.0, True)])
def test_divide_by_zero(dtype, zero, negative):
    # TODO pending NA/NaN discussion
    # https://github.com/pandas-dev/pandas/issues/32265/
    a = pd.array([0, 1, -1, None], dtype=dtype)
    result = a / zero
    expected = FloatingArray(
        np.array([np.nan, np.inf, -np.inf, np.nan], dtype=dtype.numpy_dtype),
        np.array([False, False, False, True]),
    )
    if negative:
        expected *= -1
    tm.assert_extension_array_equal(result, expected)
 
 
def test_pow_scalar(dtype):
    a = pd.array([-1, 0, 1, None, 2], dtype=dtype)
    result = a**0
    expected = pd.array([1, 1, 1, 1, 1], dtype=dtype)
    tm.assert_extension_array_equal(result, expected)
 
    result = a**1
    expected = pd.array([-1, 0, 1, None, 2], dtype=dtype)
    tm.assert_extension_array_equal(result, expected)
 
    result = a**pd.NA
    expected = pd.array([None, None, 1, None, None], dtype=dtype)
    tm.assert_extension_array_equal(result, expected)
 
    result = a**np.nan
    # TODO np.nan should be converted to pd.NA / missing before operation?
    expected = FloatingArray(
        np.array([np.nan, np.nan, 1, np.nan, np.nan], dtype=dtype.numpy_dtype),
        mask=a._mask,
    )
    tm.assert_extension_array_equal(result, expected)
 
    # reversed
    a = a[1:]  # Can't raise integers to negative powers.
 
    result = 0**a
    expected = pd.array([1, 0, None, 0], dtype=dtype)
    tm.assert_extension_array_equal(result, expected)
 
    result = 1**a
    expected = pd.array([1, 1, 1, 1], dtype=dtype)
    tm.assert_extension_array_equal(result, expected)
 
    result = pd.NA**a
    expected = pd.array([1, None, None, None], dtype=dtype)
    tm.assert_extension_array_equal(result, expected)
 
    result = np.nan**a
    expected = FloatingArray(
        np.array([1, np.nan, np.nan, np.nan], dtype=dtype.numpy_dtype), mask=a._mask
    )
    tm.assert_extension_array_equal(result, expected)
 
 
def test_pow_array(dtype):
    a = pd.array([0, 0, 0, 1, 1, 1, None, None, None], dtype=dtype)
    b = pd.array([0, 1, None, 0, 1, None, 0, 1, None], dtype=dtype)
    result = a**b
    expected = pd.array([1, 0, None, 1, 1, 1, 1, None, None], dtype=dtype)
    tm.assert_extension_array_equal(result, expected)
 
 
def test_rpow_one_to_na():
    # https://github.com/pandas-dev/pandas/issues/22022
    # https://github.com/pandas-dev/pandas/issues/29997
    arr = pd.array([np.nan, np.nan], dtype="Float64")
    result = np.array([1.0, 2.0]) ** arr
    expected = pd.array([1.0, np.nan], dtype="Float64")
    tm.assert_extension_array_equal(result, expected)
 
 
@pytest.mark.parametrize("other", [0, 0.5])
def test_arith_zero_dim_ndarray(other):
    arr = pd.array([1, None, 2], dtype="Float64")
    result = arr + np.array(other)
    expected = arr + other
    tm.assert_equal(result, expected)
 
 
# Test generic characteristics / errors
# -----------------------------------------------------------------------------
 
 
def test_error_invalid_values(data, all_arithmetic_operators):
    op = all_arithmetic_operators
    s = pd.Series(data)
    ops = getattr(s, op)
 
    # invalid scalars
    msg = "|".join(
        [
            r"can only perform ops with numeric values",
            r"FloatingArray cannot perform the operation mod",
            "unsupported operand type",
            "not all arguments converted during string formatting",
            "can't multiply sequence by non-int of type 'float'",
            "ufunc 'subtract' cannot use operands with types dtype",
            r"can only concatenate str \(not \"float\"\) to str",
            "ufunc '.*' not supported for the input types, and the inputs could not",
            "ufunc '.*' did not contain a loop with signature matching types",
            "Concatenation operation is not implemented for NumPy arrays",
        ]
    )
    with pytest.raises(TypeError, match=msg):
        ops("foo")
    with pytest.raises(TypeError, match=msg):
        ops(pd.Timestamp("20180101"))
 
    # invalid array-likes
    with pytest.raises(TypeError, match=msg):
        ops(pd.Series("foo", index=s.index))
 
    msg = "|".join(
        [
            "can only perform ops with numeric values",
            "cannot perform .* with this index type: DatetimeArray",
            "Addition/subtraction of integers and integer-arrays "
            "with DatetimeArray is no longer supported. *",
            "unsupported operand type",
            "not all arguments converted during string formatting",
            "can't multiply sequence by non-int of type 'float'",
            "ufunc 'subtract' cannot use operands with types dtype",
            (
                "ufunc 'add' cannot use operands with types "
                rf"dtype\('{tm.ENDIAN}M8\[ns\]'\)"
            ),
            r"ufunc 'add' cannot use operands with types dtype\('float\d{2}'\)",
            "cannot subtract DatetimeArray from ndarray",
        ]
    )
    with pytest.raises(TypeError, match=msg):
        ops(pd.Series(pd.date_range("20180101", periods=len(s))))
 
 
# Various
# -----------------------------------------------------------------------------
 
 
def test_cross_type_arithmetic():
    df = pd.DataFrame(
        {
            "A": pd.array([1, 2, np.nan], dtype="Float64"),
            "B": pd.array([1, np.nan, 3], dtype="Float32"),
            "C": np.array([1, 2, 3], dtype="float64"),
        }
    )
 
    result = df.A + df.C
    expected = pd.Series([2, 4, np.nan], dtype="Float64")
    tm.assert_series_equal(result, expected)
 
    result = (df.A + df.C) * 3 == 12
    expected = pd.Series([False, True, None], dtype="boolean")
    tm.assert_series_equal(result, expected)
 
    result = df.A + df.B
    expected = pd.Series([2, np.nan, np.nan], dtype="Float64")
    tm.assert_series_equal(result, expected)
 
 
@pytest.mark.parametrize(
    "source, neg_target, abs_target",
    [
        ([1.1, 2.2, 3.3], [-1.1, -2.2, -3.3], [1.1, 2.2, 3.3]),
        ([1.1, 2.2, None], [-1.1, -2.2, None], [1.1, 2.2, None]),
        ([-1.1, 0.0, 1.1], [1.1, 0.0, -1.1], [1.1, 0.0, 1.1]),
    ],
)
def test_unary_float_operators(float_ea_dtype, source, neg_target, abs_target):
    # GH38794
    dtype = float_ea_dtype
    arr = pd.array(source, dtype=dtype)
    neg_result, pos_result, abs_result = -arr, +arr, abs(arr)
    neg_target = pd.array(neg_target, dtype=dtype)
    abs_target = pd.array(abs_target, dtype=dtype)
 
    tm.assert_extension_array_equal(neg_result, neg_target)
    tm.assert_extension_array_equal(pos_result, arr)
    assert not tm.shares_memory(pos_result, arr)
    tm.assert_extension_array_equal(abs_result, abs_target)
 
 
def test_bitwise(dtype):
    left = pd.array([1, None, 3, 4], dtype=dtype)
    right = pd.array([None, 3, 5, 4], dtype=dtype)
 
    with pytest.raises(TypeError, match="unsupported operand type"):
        left | right
    with pytest.raises(TypeError, match="unsupported operand type"):
        left & right
    with pytest.raises(TypeError, match="unsupported operand type"):
        left ^ right