1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
U
¬ý°d}ƒã@s$ddlmZddlmZmZddlZddlmZddlm    Z    m
Z
m Z m Z m Z ddlmZddlmZmZddlmZdd    lmZe    r˜dd
lmZmZmZed ƒZed ƒZed ƒZedƒZddeeeeddœZ edƒZ!edƒZ"dddee!e"ddœZ#edƒZ$ddddœdd„Z%ddddœd d!„Z&dGd"d#d$œd%d&„Z'Gd'd(„d(eƒZ(Gd)d*„d*e(ƒZ)Gd+d,„d,e(ƒZ*Gd-d.„d.ƒZ+Gd/d0„d0e+ƒZ,Gd1d2„d2e+ƒZ-Gd3d4„d4eƒZ.Gd5d6„d6e.ƒZ/Gd7d8„d8e/ƒZ0Gd9d:„d:e.ƒZ1Gd;d<„d<e/e1ƒZ2Gd=d>„d>e.ƒZ3Gd?d@„d@e3ƒZ4GdAdB„dBe3e1ƒZ5ddCdDœdEdF„Z6dS)Hé)Ú annotations)ÚABCÚabstractmethodN)Údedent)Ú TYPE_CHECKINGÚIterableÚIteratorÚMappingÚSequence©Ú
get_option)ÚDtypeÚ WriteBuffer)Úformat)Ú pprint_thing)Ú    DataFrameÚIndexÚSeriesa    max_cols : int, optional
        When to switch from the verbose to the truncated output. If the
        DataFrame has more than `max_cols` columns, the truncated output
        is used. By default, the setting in
        ``pandas.options.display.max_info_columns`` is used.aR    show_counts : bool, optional
        Whether to show the non-null counts. By default, this is shown
        only if the DataFrame is smaller than
        ``pandas.options.display.max_info_rows`` and
        ``pandas.options.display.max_info_columns``. A value of True always
        shows the counts, and False never shows the counts.a     >>> int_values = [1, 2, 3, 4, 5]
    >>> text_values = ['alpha', 'beta', 'gamma', 'delta', 'epsilon']
    >>> float_values = [0.0, 0.25, 0.5, 0.75, 1.0]
    >>> df = pd.DataFrame({"int_col": int_values, "text_col": text_values,
    ...                   "float_col": float_values})
    >>> df
        int_col text_col  float_col
    0        1    alpha       0.00
    1        2     beta       0.25
    2        3    gamma       0.50
    3        4    delta       0.75
    4        5  epsilon       1.00
 
    Prints information of all columns:
 
    >>> df.info(verbose=True)
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 5 entries, 0 to 4
    Data columns (total 3 columns):
     #   Column     Non-Null Count  Dtype
    ---  ------     --------------  -----
     0   int_col    5 non-null      int64
     1   text_col   5 non-null      object
     2   float_col  5 non-null      float64
    dtypes: float64(1), int64(1), object(1)
    memory usage: 248.0+ bytes
 
    Prints a summary of columns count and its dtypes but not per column
    information:
 
    >>> df.info(verbose=False)
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 5 entries, 0 to 4
    Columns: 3 entries, int_col to float_col
    dtypes: float64(1), int64(1), object(1)
    memory usage: 248.0+ bytes
 
    Pipe output of DataFrame.info to buffer instead of sys.stdout, get
    buffer content and writes to a text file:
 
    >>> import io
    >>> buffer = io.StringIO()
    >>> df.info(buf=buffer)
    >>> s = buffer.getvalue()
    >>> with open("df_info.txt", "w",
    ...           encoding="utf-8") as f:  # doctest: +SKIP
    ...     f.write(s)
    260
 
    The `memory_usage` parameter allows deep introspection mode, specially
    useful for big DataFrames and fine-tune memory optimization:
 
    >>> random_strings_array = np.random.choice(['a', 'b', 'c'], 10 ** 6)
    >>> df = pd.DataFrame({
    ...     'column_1': np.random.choice(['a', 'b', 'c'], 10 ** 6),
    ...     'column_2': np.random.choice(['a', 'b', 'c'], 10 ** 6),
    ...     'column_3': np.random.choice(['a', 'b', 'c'], 10 ** 6)
    ... })
    >>> df.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 1000000 entries, 0 to 999999
    Data columns (total 3 columns):
     #   Column    Non-Null Count    Dtype
    ---  ------    --------------    -----
     0   column_1  1000000 non-null  object
     1   column_2  1000000 non-null  object
     2   column_3  1000000 non-null  object
    dtypes: object(3)
    memory usage: 22.9+ MB
 
    >>> df.info(memory_usage='deep')
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 1000000 entries, 0 to 999999
    Data columns (total 3 columns):
     #   Column    Non-Null Count    Dtype
    ---  ------    --------------    -----
     0   column_1  1000000 non-null  object
     1   column_2  1000000 non-null  object
     2   column_3  1000000 non-null  object
    dtypes: object(3)
    memory usage: 165.9 MBz”    DataFrame.describe: Generate descriptive statistics of DataFrame
        columns.
    DataFrame.memory_usage: Memory usage of DataFrame columns.rz  and columnsÚ)ÚklassZtype_subZ max_cols_subÚshow_counts_subZ examples_subZ see_also_subZversion_added_subaî    >>> int_values = [1, 2, 3, 4, 5]
    >>> text_values = ['alpha', 'beta', 'gamma', 'delta', 'epsilon']
    >>> s = pd.Series(text_values, index=int_values)
    >>> s.info()
    <class 'pandas.core.series.Series'>
    Index: 5 entries, 1 to 5
    Series name: None
    Non-Null Count  Dtype
    --------------  -----
    5 non-null      object
    dtypes: object(1)
    memory usage: 80.0+ bytes
 
    Prints a summary excluding information about its values:
 
    >>> s.info(verbose=False)
    <class 'pandas.core.series.Series'>
    Index: 5 entries, 1 to 5
    dtypes: object(1)
    memory usage: 80.0+ bytes
 
    Pipe output of Series.info to buffer instead of sys.stdout, get
    buffer content and writes to a text file:
 
    >>> import io
    >>> buffer = io.StringIO()
    >>> s.info(buf=buffer)
    >>> s = buffer.getvalue()
    >>> with open("df_info.txt", "w",
    ...           encoding="utf-8") as f:  # doctest: +SKIP
    ...     f.write(s)
    260
 
    The `memory_usage` parameter allows deep introspection mode, specially
    useful for big Series and fine-tune memory optimization:
 
    >>> random_strings_array = np.random.choice(['a', 'b', 'c'], 10 ** 6)
    >>> s = pd.Series(np.random.choice(['a', 'b', 'c'], 10 ** 6))
    >>> s.info()
    <class 'pandas.core.series.Series'>
    RangeIndex: 1000000 entries, 0 to 999999
    Series name: None
    Non-Null Count    Dtype
    --------------    -----
    1000000 non-null  object
    dtypes: object(1)
    memory usage: 7.6+ MB
 
    >>> s.info(memory_usage='deep')
    <class 'pandas.core.series.Series'>
    RangeIndex: 1000000 entries, 0 to 999999
    Series name: None
    Non-Null Count    Dtype
    --------------    -----
    1000000 non-null  object
    dtypes: object(1)
    memory usage: 55.3 MBzp    Series.describe: Generate descriptive statistics of Series.
    Series.memory_usage: Memory usage of Series.rz
.. versionadded:: 1.4.0
aÅ
    Print a concise summary of a {klass}.
 
    This method prints information about a {klass} including
    the index dtype{type_sub}, non-null values and memory usage.
    {version_added_sub}
    Parameters
    ----------
    verbose : bool, optional
        Whether to print the full summary. By default, the setting in
        ``pandas.options.display.max_info_columns`` is followed.
    buf : writable buffer, defaults to sys.stdout
        Where to send the output. By default, the output is printed to
        sys.stdout. Pass a writable buffer if you need to further process
        the output.
    {max_cols_sub}
    memory_usage : bool, str, optional
        Specifies whether total memory usage of the {klass}
        elements (including the index) should be displayed. By default,
        this follows the ``pandas.options.display.memory_usage`` setting.
 
        True always show memory usage. False never shows memory usage.
        A value of 'deep' is equivalent to "True with deep introspection".
        Memory usage is shown in human-readable units (base-2
        representation). Without deep introspection a memory estimation is
        made based in column dtype and number of rows assuming values
        consume the same memory amount for corresponding dtypes. With deep
        memory introspection, a real memory usage calculation is performed
        at the cost of computational resources. See the
        :ref:`Frequently Asked Questions <df-memory-usage>` for more
        details.
    {show_counts_sub}
 
    Returns
    -------
    None
        This method prints a summary of a {klass} and returns None.
 
    See Also
    --------
    {see_also_sub}
 
    Examples
    --------
    {examples_sub}
    z str | DtypeÚintÚstr)ÚsÚspaceÚreturncCst|ƒd|… |¡S)a»
    Make string of specified length, padding to the right if necessary.
 
    Parameters
    ----------
    s : Union[str, Dtype]
        String to be formatted.
    space : int
        Length to force string to be of.
 
    Returns
    -------
    str
        String coerced to given length.
 
    Examples
    --------
    >>> pd.io.formats.info._put_str("panda", 6)
    'panda '
    >>> pd.io.formats.info._put_str("panda", 4)
    'pand'
    N)rÚljust)rr©rúMd:\z\workplace\vscode\pyvenv\venv\Lib\site-packages\pandas/io/formats/info.pyÚ_put_str$srÚfloat)ÚnumÚsize_qualifierrcCsBdD],}|dkr(|d›|›d|›S|d}q|d›|›dS)a{
    Return size in human readable format.
 
    Parameters
    ----------
    num : int
        Size in bytes.
    size_qualifier : str
        Either empty, or '+' (if lower bound).
 
    Returns
    -------
    str
        Size in human readable format.
 
    Examples
    --------
    >>> _sizeof_fmt(23028, '')
    '22.5 KB'
 
    >>> _sizeof_fmt(23028, '+')
    '22.5+ KB'
    )ÚbytesZKBZMBZGBZTBg@z3.1fú z PBr)r!r"ÚxrrrÚ _sizeof_fmt>s
 
r&úbool | str | Noneú
bool | str)Ú memory_usagercCs|dkrtdƒ}|S)z5Get memory usage based on inputs and display options.Nzdisplay.memory_usager )r)rrrÚ_initialize_memory_usage]sr*c@s¸eZdZUdZded<ded<eeddœdd    „ƒƒZeed
dœd d „ƒƒZeed dœdd„ƒƒZ    eeddœdd„ƒƒZ
eddœdd„ƒZ eddœdd„ƒZ eddddddœdd„ƒZ dS) ÚBaseInfoaj
    Base class for DataFrameInfo and SeriesInfo.
 
    Parameters
    ----------
    data : DataFrame or Series
        Either dataframe or series.
    memory_usage : bool or str, optional
        If "deep", introspect the data deeply by interrogating object dtypes
        for system-level memory consumption, and include it in the returned
        values.
    úDataFrame | SeriesÚdatar(r)úIterable[Dtype]©rcCsdS)z¡
        Dtypes.
 
        Returns
        -------
        dtypes : sequence
            Dtype of each of the DataFrame's columns (or one series column).
        Nr©ÚselfrrrÚdtypeswszBaseInfo.dtypesúMapping[str, int]cCsdS)ú!Mapping dtype - number of counts.Nrr0rrrÚ dtype_countsƒszBaseInfo.dtype_countsú Sequence[int]cCsdS)úBSequence of non-null counts for all columns or column (if series).Nrr0rrrÚnon_null_countsˆszBaseInfo.non_null_countsrcCsdS)zœ
        Memory usage in bytes.
 
        Returns
        -------
        memory_usage_bytes : int
            Object's total memory usage in bytes.
        Nrr0rrrÚmemory_usage_bytesszBaseInfo.memory_usage_bytesrcCst|j|jƒ›dS)z0Memory usage in a form of human readable string.Ú
)r&r9r"r0rrrÚmemory_usage_string™szBaseInfo.memory_usage_stringcCs2d}|jr.|jdkr.d|jks*|jj ¡r.d}|S)NrÚdeepÚobjectú+)r)r5r-ÚindexZ_is_memory_usage_qualified)r1r"rrrr"žs
ÿ
þzBaseInfo.size_qualifierúWriteBuffer[str] | Noneú
int | Noneú bool | NoneÚNone©ÚbufÚmax_colsÚverboseÚ show_countsrcCsdS©Nr)r1rErFrGrHrrrÚrender­s    zBaseInfo.renderN)Ú__name__Ú
__module__Ú __qualname__Ú__doc__Ú__annotations__Úpropertyrr2r5r8r9r;r"rJrrrrr+fs*
 
 
r+c@s¦eZdZdZd!ddddœdd„Zed    d
œd d „ƒZed d
œdd„ƒZedd
œdd„ƒZedd
œdd„ƒZ    edd
œdd„ƒZ
edd
œdd„ƒZ ddddddœdd „Z dS)"Ú DataFrameInfoz0
    Class storing dataframe-specific info.
    Nrr'rC©r-r)rcCs||_t|ƒ|_dSrI©r-r*r)©r1r-r)rrrÚ__init__¾szDataFrameInfo.__init__r3r/cCs
t|jƒSrI)Ú_get_dataframe_dtype_countsr-r0rrrr5ÆszDataFrameInfo.dtype_countsr.cCs|jjS)z
        Dtypes.
 
        Returns
        -------
        dtypes
            Dtype of each of the DataFrame's columns.
        ©r-r2r0rrrr2Ês
zDataFrameInfo.dtypesrcCs|jjS)zz
        Column names.
 
        Returns
        -------
        ids : Index
            DataFrame's column names.
        )r-Úcolumnsr0rrrÚidsÖs
zDataFrameInfo.idsrcCs
t|jƒS©z#Number of columns to be summarized.)ÚlenrYr0rrrÚ    col_countâszDataFrameInfo.col_countr6cCs
|j ¡S)r7©r-Úcountr0rrrr8çszDataFrameInfo.non_null_countscCs|jdk}|jjd|d ¡S)Nr<T©r?r<)r)r-Úsum©r1r<rrrr9ìs
z DataFrameInfo.memory_usage_bytesr@rArBrDcCst||||d}| |¡dS)N)ÚinforFrGrH)ÚDataFrameInfoPrinterÚ    to_buffer©r1rErFrGrHÚprinterrrrrJñsüzDataFrameInfo.render)N) rKrLrMrNrUrPr5r2rYr\r8r9rJrrrrrQ¹s ý  rQc@sŽeZdZdZdddddœdd„Zddddd    œd
d d d dd œdd„Zeddœdd„ƒZeddœdd„ƒZeddœdd„ƒZ    eddœdd„ƒZ
dS)Ú
SeriesInfoz-
    Class storing series-specific info.
    Nrr'rCrRcCs||_t|ƒ|_dSrIrSrTrrrrUszSeriesInfo.__init__)rErFrGrHr@rArBrDcCs,|dk    rtdƒ‚t|||d}| |¡dS)NzIArgument `max_cols` can only be passed in DataFrame.info, not Series.info)rbrGrH)Ú
ValueErrorÚSeriesInfoPrinterrdrerrrrJsÿýzSeriesInfo.renderr6r/cCs |j ¡gSrIr]r0rrrr8#szSeriesInfo.non_null_countsr.cCs
|jjgSrIrWr0rrrr2'szSeriesInfo.dtypesr3cCsddlm}t||jƒƒS)Nr)r)Zpandas.core.framerrVr-)r1rrrrr5+s zSeriesInfo.dtype_countsrcCs|jdk}|jjd|dS)z“Memory usage in bytes.
 
        Returns
        -------
        memory_usage_bytes : int
            Object's total memory usage in bytes.
        r<Tr_)r)r-rarrrr91s    
zSeriesInfo.memory_usage_bytes)N) rKrLrMrNrUrJrPr8r2r5r9rrrrrgs ý úrgc@s4eZdZdZd dddœdd„Zedd    œd
d „ƒZdS) ÚInfoPrinterAbstractz6
    Class for printing dataframe or series info.
    Nr@rC)rErcCs.| ¡}| ¡}|dkrtj}t ||¡dS)z Save dataframe info into buffer.N)Ú_create_table_builderÚ    get_linesÚsysÚstdoutÚfmtZbuffer_put_lines)r1rEZ table_builderÚlinesrrrrdCs
zInfoPrinterAbstract.to_bufferÚTableBuilderAbstractr/cCsdS)z!Create instance of table builder.Nrr0rrrrkKsz)InfoPrinterAbstract._create_table_builder)N)rKrLrMrNrdrrkrrrrrj>srjc@sžeZdZdZdddddddœdd    „Zed
d œd d „ƒZedd œdd„ƒZedd œdd„ƒZed
d œdd„ƒZ    dd
dœdd„Z
dddœdd„Z dd œdd„Z dS)rca{
    Class for printing dataframe info.
 
    Parameters
    ----------
    info : DataFrameInfo
        Instance of DataFrameInfo.
    max_cols : int, optional
        When to switch from the verbose to the truncated output.
    verbose : bool, optional
        Whether to print the full summary.
    show_counts : bool, optional
        Whether to show the non-null counts.
    NrQrArBrC)rbrFrGrHrcCs0||_|j|_||_| |¡|_| |¡|_dSrI)rbr-rGÚ_initialize_max_colsrFÚ_initialize_show_countsrH)r1rbrFrGrHrrrrU`s
 zDataFrameInfoPrinter.__init__rr/cCstdt|jƒdƒS)z"Maximum info rows to be displayed.zdisplay.max_info_rowsé)r r[r-r0rrrÚmax_rowsmszDataFrameInfoPrinter.max_rowsÚboolcCst|j|jkƒS)zDCheck if number of columns to be summarized does not exceed maximum.)rvr\rFr0rrrÚexceeds_info_colsrsz&DataFrameInfoPrinter.exceeds_info_colscCstt|jƒ|jkƒS)zACheck if number of rows to be summarized does not exceed maximum.)rvr[r-rur0rrrÚexceeds_info_rowswsz&DataFrameInfoPrinter.exceeds_info_rowscCs|jjSrZ©rbr\r0rrrr\|szDataFrameInfoPrinter.col_count)rFrcCs|dkrtd|jdƒS|S)Nzdisplay.max_info_columnsrt)r r\)r1rFrrrrrsz)DataFrameInfoPrinter._initialize_max_cols©rHrcCs$|dkrt|j o|j ƒS|SdSrI)rvrwrx©r1rHrrrrs†sz,DataFrameInfoPrinter._initialize_show_countsÚDataFrameTableBuildercCsR|jrt|j|jdS|jdkr,t|jdS|jr>t|jdSt|j|jdSdS)z[
        Create instance of table builder based on verbosity and display settings.
        ©rbÚ with_countsF©rbN)rGÚDataFrameTableBuilderVerboserbrHÚDataFrameTableBuilderNonVerboserwr0rrrrkŒsþ
  þz*DataFrameInfoPrinter._create_table_builder)NNN) rKrLrMrNrUrPrurwrxr\rrrsrkrrrrrcPs û rcc@sDeZdZdZddddddœdd„Zd    d
œd d „Zdd dœdd„ZdS)riaClass for printing series info.
 
    Parameters
    ----------
    info : SeriesInfo
        Instance of SeriesInfo.
    verbose : bool, optional
        Whether to print the full summary.
    show_counts : bool, optional
        Whether to show the non-null counts.
    NrgrBrC)rbrGrHrcCs$||_|j|_||_| |¡|_dSrI)rbr-rGrsrH)r1rbrGrHrrrrU®szSeriesInfoPrinter.__init__ÚSeriesTableBuilderr/cCs0|js|jdkr t|j|jdSt|jdSdS)zF
        Create instance of table builder based on verbosity.
        Nr}r)rGÚSeriesTableBuilderVerboserbrHÚSeriesTableBuilderNonVerboser0rrrrk¹s þz'SeriesInfoPrinter._create_table_builderrvrzcCs|dkr dS|SdS)NTrr{rrrrsÅsz)SeriesInfoPrinter._initialize_show_counts)NN)rKrLrMrNrUrkrsrrrrri¡s ü  ric@sÊeZdZUdZded<ded<eddœdd„ƒZed    dœd
d „ƒZed dœd d„ƒZ    eddœdd„ƒZ
eddœdd„ƒZ eddœdd„ƒZ eddœdd„ƒZ ddœdd„Zddœdd„Zddœd d!„Zd"S)#rqz*
    Abstract builder for info table.
    ú    list[str]Ú_linesr+rbr/cCsdS)z-Product in a form of list of lines (strings).Nrr0rrrrlÔszTableBuilderAbstract.get_linesr,cCs|jjSrI©rbr-r0rrrr-ØszTableBuilderAbstract.datar.cCs|jjS)z*Dtypes of each of the DataFrame's columns.)rbr2r0rrrr2ÜszTableBuilderAbstract.dtypesr3cCs|jjS)r4)rbr5r0rrrr5ász!TableBuilderAbstract.dtype_countsrvcCs t|jjƒS)z Whether to display memory usage.)rvrbr)r0rrrÚdisplay_memory_usageæsz)TableBuilderAbstract.display_memory_usagercCs|jjS)z/Memory usage string with proper size qualifier.)rbr;r0rrrr;ësz(TableBuilderAbstract.memory_usage_stringr6cCs|jjSrI)rbr8r0rrrr8ðsz$TableBuilderAbstract.non_null_countsrCcCs|j tt|jƒƒ¡dS)z>Add line with string representation of dataframe to the table.N)r†ÚappendrÚtyper-r0rrrÚadd_object_type_lineôsz)TableBuilderAbstract.add_object_type_linecCs|j |jj ¡¡dS)z,Add line with range of indices to the table.N)r†r‰r-r?Ú_summaryr0rrrÚadd_index_range_lineøsz)TableBuilderAbstract.add_index_range_linecCs4dd„t|j ¡ƒDƒ}|j dd |¡›¡dS)z2Add summary line with dtypes present in dataframe.cSs"g|]\}}|›d|d›d‘qS)ú(Údú)r)Ú.0ÚkeyÚvalrrrÚ
<listcomp>þsz8TableBuilderAbstract.add_dtypes_line.<locals>.<listcomp>zdtypes: z, N)Úsortedr5Úitemsr†r‰Újoin)r1Zcollected_dtypesrrrÚadd_dtypes_lineüs ÿz$TableBuilderAbstract.add_dtypes_lineN)rKrLrMrNrOrrlrPr-r2r5rˆr;r8r‹rr˜rrrrrqÌs(
rqc@s’eZdZdZdddœdd„Zddœd    d
„Zddœd d „Zeddœd d„ƒZe    ddœdd„ƒZ
e    ddœdd„ƒZ e    ddœdd„ƒZ ddœdd„Z dS)r|z
    Abstract builder for dataframe info table.
 
    Parameters
    ----------
    info : DataFrameInfo.
        Instance of DataFrameInfo.
    rQrC©rbrcCs
||_dSrIr©r1rbrrrrUszDataFrameTableBuilder.__init__r…r/cCs(g|_|jdkr| ¡n| ¡|jS)Nr)r†r\Ú_fill_empty_infoÚ_fill_non_empty_infor0rrrrls
 
 
zDataFrameTableBuilder.get_linescCs0| ¡| ¡|j dt|jƒj›d¡dS)z;Add lines to the info table, pertaining to empty dataframe.zEmpty r:N)r‹rr†r‰rŠr-rKr0rrrr›sz&DataFrameTableBuilder._fill_empty_infocCsdS©z?Add lines to the info table, pertaining to non-empty dataframe.Nrr0rrrrœsz*DataFrameTableBuilder._fill_non_empty_inforcCs|jjS)z
DataFrame.r‡r0rrrr-#szDataFrameTableBuilder.datarcCs|jjS)zDataframe columns.)rbrYr0rrrrY(szDataFrameTableBuilder.idsrcCs|jjS)z-Number of dataframe columns to be summarized.ryr0rrrr\-szDataFrameTableBuilder.col_countcCs|j d|j›¡dS©z!Add line containing memory usage.zmemory usage: N©r†r‰r;r0rrrÚadd_memory_usage_line2sz+DataFrameTableBuilder.add_memory_usage_lineN)rKrLrMrNrUrlr›rrœrPr-rYr\r rrrrr|s    r|c@s,eZdZdZddœdd„Zddœdd„ZdS)    rz>
    Dataframe info table builder for non-verbose output.
    rCr/cCs2| ¡| ¡| ¡| ¡|jr.| ¡dSr)r‹rÚadd_columns_summary_liner˜rˆr r0rrrrœ<s z4DataFrameTableBuilderNonVerbose._fill_non_empty_infocCs|j |jjdd¡dS)NZColumns©Úname)r†r‰rYrŒr0rrrr¡Esz8DataFrameTableBuilderNonVerbose.add_columns_summary_lineN)rKrLrMrNrœr¡rrrrr7s    rc@sòeZdZUdZdZded<ded<ded<d    ed
<eed d œd d„ƒƒZedd œdd„ƒZ    dd œdd„Z
dd œdd„Z dd œdd„Z edd œdd„ƒZ edd œdd„ƒZdd œdd„Zdd œdd „Zdd œd!d"„Zd#d œd$d%„Zd#d œd&d'„Zd(S))ÚTableBuilderVerboseMixinz(
    Mixin for verbose info output.
    z  rÚSPACINGzSequence[Sequence[str]]Ústrrowsr6Úgross_column_widthsrvr~ú Sequence[str]r/cCsdS)ú.Headers names of the columns in verbose table.Nrr0rrrÚheadersSsz TableBuilderVerboseMixin.headerscCsdd„|jDƒS)z'Widths of header columns (only titles).cSsg|] }t|ƒ‘qSr©r[©r‘Úcolrrrr”[szATableBuilderVerboseMixin.header_column_widths.<locals>.<listcomp>)rªr0rrrÚheader_column_widthsXsz-TableBuilderVerboseMixin.header_column_widthscCs| ¡}dd„t|j|ƒDƒS)zAGet widths of columns containing both headers and actual content.cSsg|] }t|Ž‘qSr©Úmax)r‘Zwidthsrrrr”`sÿzETableBuilderVerboseMixin._get_gross_column_widths.<locals>.<listcomp>)Ú_get_body_column_widthsÚzipr®)r1Zbody_column_widthsrrrÚ_get_gross_column_widths]s
þz1TableBuilderVerboseMixin._get_gross_column_widthscCstt|jŽƒ}dd„|DƒS)z$Get widths of table content columns.cSsg|]}tdd„|Dƒƒ‘qS)css|]}t|ƒVqdSrIr«)r‘r%rrrÚ    <genexpr>hszNTableBuilderVerboseMixin._get_body_column_widths.<locals>.<listcomp>.<genexpr>r¯r¬rrrr”hszDTableBuilderVerboseMixin._get_body_column_widths.<locals>.<listcomp>)Úlistr²r¦)r1Zstrcolsrrrr±esz0TableBuilderVerboseMixin._get_body_column_widthsúIterator[Sequence[str]]cCs|jr| ¡S| ¡SdS)z„
        Generator function yielding rows content.
 
        Each element represents a row comprising a sequence of strings.
        N)r~Ú_gen_rows_with_countsÚ_gen_rows_without_countsr0rrrÚ    _gen_rowsjsz"TableBuilderVerboseMixin._gen_rowscCsdS©z=Iterator with string representation of body data with counts.Nrr0rrrr·usz.TableBuilderVerboseMixin._gen_rows_with_countscCsdS©z@Iterator with string representation of body data without counts.Nrr0rrrr¸ysz1TableBuilderVerboseMixin._gen_rows_without_countsrCcCs0|j dd„t|j|jƒDƒ¡}|j |¡dS)NcSsg|]\}}t||ƒ‘qSr©r)r‘ÚheaderZ    col_widthrrrr”sÿz<TableBuilderVerboseMixin.add_header_line.<locals>.<listcomp>)r¥r—r²rªr§r†r‰)r1Z header_linerrrÚadd_header_line}s  þÿz(TableBuilderVerboseMixin.add_header_linecCs0|j dd„t|j|jƒDƒ¡}|j |¡dS)NcSsg|]\}}td||ƒ‘qS)ú-r¼)r‘Zheader_colwidthÚgross_colwidthrrrr”ˆsÿz?TableBuilderVerboseMixin.add_separator_line.<locals>.<listcomp>)r¥r—r²r®r§r†r‰)r1Zseparator_linerrrÚadd_separator_line†sÿþÿz+TableBuilderVerboseMixin.add_separator_linecCs:|jD].}|j dd„t||jƒDƒ¡}|j |¡qdS)NcSsg|]\}}t||ƒ‘qSrr¼)r‘r­rÀrrrr””sÿz;TableBuilderVerboseMixin.add_body_lines.<locals>.<listcomp>)r¦r¥r—r²r§r†r‰)r1ÚrowZ    body_linerrrÚadd_body_lines‘s
 
þÿz'TableBuilderVerboseMixin.add_body_linesú Iterator[str]ccs|jD]}|›dVqdS)z7Iterator with string representation of non-null counts.z     non-nullN)r8)r1r^rrrÚ_gen_non_null_counts›s
z-TableBuilderVerboseMixin._gen_non_null_countsccs|jD]}t|ƒVqdS)z5Iterator with string representation of column dtypes.N)r2r)r1ZdtyperrrÚ _gen_dtypes s
z$TableBuilderVerboseMixin._gen_dtypesN)rKrLrMrNr¥rOrPrrªr®r³r±r¹r·r¸r¾rÁrÃrÅrÆrrrrr¤Is,
       
r¤c@sˆeZdZdZddddœdd„Zddœd    d
„Zed dœd d „ƒZddœdd„Zddœdd„Z    ddœdd„Z
ddœdd„Z ddœdd„Z dS)r€z:
    Dataframe info table builder for verbose output.
    rQrvrC©rbr~rcCs(||_||_t| ¡ƒ|_| ¡|_dSrI©rbr~rµr¹r¦r³r§©r1rbr~rrrrU«sz%DataFrameTableBuilderVerbose.__init__r/cCsJ| ¡| ¡| ¡| ¡| ¡| ¡| ¡|jrF| ¡dSr)    r‹rr¡r¾rÁrÃr˜rˆr r0rrrrœ¶sz1DataFrameTableBuilderVerbose._fill_non_empty_infor¨cCs|jrddddgSdddgS)r©z # ZColumnúNon-Null Countr ©r~r0rrrrªÂs z$DataFrameTableBuilderVerbose.headerscCs|j d|j›d¡dS)NzData columns (total z
 columns):)r†r‰r\r0rrrr¡Ész5DataFrameTableBuilderVerbose.add_columns_summary_liner¶ccs"t| ¡| ¡| ¡ƒEdHdSr»)r²Ú_gen_line_numbersÚ _gen_columnsrÆr0rrrr¸Ìs
ýz5DataFrameTableBuilderVerbose._gen_rows_without_countsccs(t| ¡| ¡| ¡| ¡ƒEdHdSrº)r²rÌrÍrÅrÆr0rrrr·Ôs üz2DataFrameTableBuilderVerbose._gen_rows_with_countsrÄccs$t|jƒD]\}}d|›Vq
dS)z6Iterator with string representation of column numbers.r$N)Ú    enumeraterY)r1ÚiÚ_rrrrÌÝsz.DataFrameTableBuilderVerbose._gen_line_numbersccs|jD]}t|ƒVqdS)z4Iterator with string representation of column names.N)rYr)r1r­rrrrÍâs
z)DataFrameTableBuilderVerbose._gen_columnsN) rKrLrMrNrUrœrPrªr¡r¸r·rÌrÍrrrrr€¦s      r€c@s`eZdZdZdddœdd„Zddœd    d
„Zed dœd d „ƒZddœdd„Ze    ddœdd„ƒZ
dS)r‚z‡
    Abstract builder for series info table.
 
    Parameters
    ----------
    info : SeriesInfo.
        Instance of SeriesInfo.
    rgrCr™cCs
||_dSrIrršrrrrUòszSeriesTableBuilder.__init__r…r/cCsg|_| ¡|jSrI)r†rœr0rrrrlõszSeriesTableBuilder.get_linesrcCs|jjS)zSeries.r‡r0rrrr-úszSeriesTableBuilder.datacCs|j d|j›¡dSržrŸr0rrrr ÿsz(SeriesTableBuilder.add_memory_usage_linecCsdS©z<Add lines to the info table, pertaining to non-empty series.Nrr0rrrrœsz'SeriesTableBuilder._fill_non_empty_infoN) rKrLrMrNrUrlrPr-r rrœrrrrr‚ès    r‚c@seZdZdZddœdd„ZdS)r„z;
    Series info table builder for non-verbose output.
    rCr/cCs*| ¡| ¡| ¡|jr&| ¡dSrÑ)r‹rr˜rˆr r0rrrrœ s
z1SeriesTableBuilderNonVerbose._fill_non_empty_infoN)rKrLrMrNrœrrrrr„sr„c@sleZdZdZddddœdd„Zddœd    d
„Zddœd d „Zed dœdd„ƒZddœdd„Z    ddœdd„Z
dS)rƒz7
    Series info table builder for verbose output.
    rgrvrCrÇcCs(||_||_t| ¡ƒ|_| ¡|_dSrIrÈrÉrrrrUsz"SeriesTableBuilderVerbose.__init__r/cCsJ| ¡| ¡| ¡| ¡| ¡| ¡| ¡|jrF| ¡dSrÑ)    r‹rÚadd_series_name_liner¾rÁrÃr˜rˆr r0rrrrœ&sz.SeriesTableBuilderVerbose._fill_non_empty_infocCs|j d|jj›¡dS)Nz Series name: )r†r‰r-r£r0rrrrÒ2sz.SeriesTableBuilderVerbose.add_series_name_liner¨cCs|jrddgSdgS)r©rÊr rËr0rrrrª5sz!SeriesTableBuilderVerbose.headersr¶ccs| ¡EdHdSr»)rÆr0rrrr¸<sz2SeriesTableBuilderVerbose._gen_rows_without_countsccst| ¡| ¡ƒEdHdSrº)r²rÅrÆr0rrrr·@sþz/SeriesTableBuilderVerbose._gen_rows_with_countsN) rKrLrMrNrUrœrÒrPrªr¸r·rrrrrƒs  rƒr3)ÚdfrcCs|j ¡ dd„¡ ¡S)zK
    Create mapping between datatypes and their number of occurrences.
    cSs|jSrIr¢)r%rrrÚ<lambda>Móz-_get_dataframe_dtype_counts.<locals>.<lambda>)r2Z value_countsÚgroupbyr`)rÓrrrrVHsrV)N)7Ú
__future__rÚabcrrrmÚtextwraprÚtypingrrrr    r
Zpandas._configr Zpandas._typingr rZpandas.io.formatsrroZpandas.io.formats.printingrZpandasrrrZframe_max_cols_subrZframe_examples_subZframe_see_also_subZframe_sub_kwargsZseries_examples_subZseries_see_also_subZseries_sub_kwargsZINFO_DOCSTRINGrr&r*r+rQrgrjrcrirqr|rr¤r€r‚r„rƒrVrrrrÚ<module>s„     ÿ
ÿ ÿVÿ    ù ÿ>ÿù ÿ3 ÿ    SI<Q+83]B 2