1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
from __future__ import annotations
 
from typing import Any
 
import numpy as np
 
from pandas._libs.lib import infer_dtype
from pandas._libs.tslibs import iNaT
from pandas.errors import NoBufferPresent
from pandas.util._decorators import cache_readonly
 
import pandas as pd
from pandas.api.types import (
    is_categorical_dtype,
    is_string_dtype,
)
from pandas.core.interchange.buffer import PandasBuffer
from pandas.core.interchange.dataframe_protocol import (
    Column,
    ColumnBuffers,
    ColumnNullType,
    DtypeKind,
)
from pandas.core.interchange.utils import (
    ArrowCTypes,
    Endianness,
    dtype_to_arrow_c_fmt,
)
 
_NP_KINDS = {
    "i": DtypeKind.INT,
    "u": DtypeKind.UINT,
    "f": DtypeKind.FLOAT,
    "b": DtypeKind.BOOL,
    "U": DtypeKind.STRING,
    "M": DtypeKind.DATETIME,
    "m": DtypeKind.DATETIME,
}
 
_NULL_DESCRIPTION = {
    DtypeKind.FLOAT: (ColumnNullType.USE_NAN, None),
    DtypeKind.DATETIME: (ColumnNullType.USE_SENTINEL, iNaT),
    DtypeKind.INT: (ColumnNullType.NON_NULLABLE, None),
    DtypeKind.UINT: (ColumnNullType.NON_NULLABLE, None),
    DtypeKind.BOOL: (ColumnNullType.NON_NULLABLE, None),
    # Null values for categoricals are stored as `-1` sentinel values
    # in the category date (e.g., `col.values.codes` is int8 np.ndarray)
    DtypeKind.CATEGORICAL: (ColumnNullType.USE_SENTINEL, -1),
    # follow Arrow in using 1 as valid value and 0 for missing/null value
    DtypeKind.STRING: (ColumnNullType.USE_BYTEMASK, 0),
}
 
_NO_VALIDITY_BUFFER = {
    ColumnNullType.NON_NULLABLE: "This column is non-nullable",
    ColumnNullType.USE_NAN: "This column uses NaN as null",
    ColumnNullType.USE_SENTINEL: "This column uses a sentinel value",
}
 
 
class PandasColumn(Column):
    """
    A column object, with only the methods and properties required by the
    interchange protocol defined.
    A column can contain one or more chunks. Each chunk can contain up to three
    buffers - a data buffer, a mask buffer (depending on null representation),
    and an offsets buffer (if variable-size binary; e.g., variable-length
    strings).
    Note: this Column object can only be produced by ``__dataframe__``, so
          doesn't need its own version or ``__column__`` protocol.
    """
 
    def __init__(self, column: pd.Series, allow_copy: bool = True) -> None:
        """
        Note: doesn't deal with extension arrays yet, just assume a regular
        Series/ndarray for now.
        """
        if not isinstance(column, pd.Series):
            raise NotImplementedError(f"Columns of type {type(column)} not handled yet")
 
        # Store the column as a private attribute
        self._col = column
        self._allow_copy = allow_copy
 
    def size(self) -> int:
        """
        Size of the column, in elements.
        """
        return self._col.size
 
    @property
    def offset(self) -> int:
        """
        Offset of first element. Always zero.
        """
        # TODO: chunks are implemented now, probably this should return something
        return 0
 
    @cache_readonly
    def dtype(self) -> tuple[DtypeKind, int, str, str]:
        dtype = self._col.dtype
 
        if is_categorical_dtype(dtype):
            codes = self._col.values.codes
            (
                _,
                bitwidth,
                c_arrow_dtype_f_str,
                _,
            ) = self._dtype_from_pandasdtype(codes.dtype)
            return (
                DtypeKind.CATEGORICAL,
                bitwidth,
                c_arrow_dtype_f_str,
                Endianness.NATIVE,
            )
        elif is_string_dtype(dtype):
            if infer_dtype(self._col) == "string":
                return (
                    DtypeKind.STRING,
                    8,
                    dtype_to_arrow_c_fmt(dtype),
                    Endianness.NATIVE,
                )
            raise NotImplementedError("Non-string object dtypes are not supported yet")
        else:
            return self._dtype_from_pandasdtype(dtype)
 
    def _dtype_from_pandasdtype(self, dtype) -> tuple[DtypeKind, int, str, str]:
        """
        See `self.dtype` for details.
        """
        # Note: 'c' (complex) not handled yet (not in array spec v1).
        #       'b', 'B' (bytes), 'S', 'a', (old-style string) 'V' (void) not handled
        #       datetime and timedelta both map to datetime (is timedelta handled?)
 
        kind = _NP_KINDS.get(dtype.kind, None)
        if kind is None:
            # Not a NumPy dtype. Check if it's a categorical maybe
            raise ValueError(f"Data type {dtype} not supported by interchange protocol")
 
        return kind, dtype.itemsize * 8, dtype_to_arrow_c_fmt(dtype), dtype.byteorder
 
    @property
    def describe_categorical(self):
        """
        If the dtype is categorical, there are two options:
        - There are only values in the data buffer.
        - There is a separate non-categorical Column encoding for categorical values.
 
        Raises TypeError if the dtype is not categorical
 
        Content of returned dict:
            - "is_ordered" : bool, whether the ordering of dictionary indices is
                             semantically meaningful.
            - "is_dictionary" : bool, whether a dictionary-style mapping of
                                categorical values to other objects exists
            - "categories" : Column representing the (implicit) mapping of indices to
                             category values (e.g. an array of cat1, cat2, ...).
                             None if not a dictionary-style categorical.
        """
        if not self.dtype[0] == DtypeKind.CATEGORICAL:
            raise TypeError(
                "describe_categorical only works on a column with categorical dtype!"
            )
 
        return {
            "is_ordered": self._col.cat.ordered,
            "is_dictionary": True,
            "categories": PandasColumn(pd.Series(self._col.cat.categories)),
        }
 
    @property
    def describe_null(self):
        kind = self.dtype[0]
        try:
            null, value = _NULL_DESCRIPTION[kind]
        except KeyError:
            raise NotImplementedError(f"Data type {kind} not yet supported")
 
        return null, value
 
    @cache_readonly
    def null_count(self) -> int:
        """
        Number of null elements. Should always be known.
        """
        return self._col.isna().sum().item()
 
    @property
    def metadata(self) -> dict[str, pd.Index]:
        """
        Store specific metadata of the column.
        """
        return {"pandas.index": self._col.index}
 
    def num_chunks(self) -> int:
        """
        Return the number of chunks the column consists of.
        """
        return 1
 
    def get_chunks(self, n_chunks: int | None = None):
        """
        Return an iterator yielding the chunks.
        See `DataFrame.get_chunks` for details on ``n_chunks``.
        """
        if n_chunks and n_chunks > 1:
            size = len(self._col)
            step = size // n_chunks
            if size % n_chunks != 0:
                step += 1
            for start in range(0, step * n_chunks, step):
                yield PandasColumn(
                    self._col.iloc[start : start + step], self._allow_copy
                )
        else:
            yield self
 
    def get_buffers(self) -> ColumnBuffers:
        """
        Return a dictionary containing the underlying buffers.
        The returned dictionary has the following contents:
            - "data": a two-element tuple whose first element is a buffer
                      containing the data and whose second element is the data
                      buffer's associated dtype.
            - "validity": a two-element tuple whose first element is a buffer
                          containing mask values indicating missing data and
                          whose second element is the mask value buffer's
                          associated dtype. None if the null representation is
                          not a bit or byte mask.
            - "offsets": a two-element tuple whose first element is a buffer
                         containing the offset values for variable-size binary
                         data (e.g., variable-length strings) and whose second
                         element is the offsets buffer's associated dtype. None
                         if the data buffer does not have an associated offsets
                         buffer.
        """
        buffers: ColumnBuffers = {
            "data": self._get_data_buffer(),
            "validity": None,
            "offsets": None,
        }
 
        try:
            buffers["validity"] = self._get_validity_buffer()
        except NoBufferPresent:
            pass
 
        try:
            buffers["offsets"] = self._get_offsets_buffer()
        except NoBufferPresent:
            pass
 
        return buffers
 
    def _get_data_buffer(
        self,
    ) -> tuple[PandasBuffer, Any]:  # Any is for self.dtype tuple
        """
        Return the buffer containing the data and the buffer's associated dtype.
        """
        if self.dtype[0] in (
            DtypeKind.INT,
            DtypeKind.UINT,
            DtypeKind.FLOAT,
            DtypeKind.BOOL,
            DtypeKind.DATETIME,
        ):
            buffer = PandasBuffer(self._col.to_numpy(), allow_copy=self._allow_copy)
            dtype = self.dtype
        elif self.dtype[0] == DtypeKind.CATEGORICAL:
            codes = self._col.values._codes
            buffer = PandasBuffer(codes, allow_copy=self._allow_copy)
            dtype = self._dtype_from_pandasdtype(codes.dtype)
        elif self.dtype[0] == DtypeKind.STRING:
            # Marshal the strings from a NumPy object array into a byte array
            buf = self._col.to_numpy()
            b = bytearray()
 
            # TODO: this for-loop is slow; can be implemented in Cython/C/C++ later
            for obj in buf:
                if isinstance(obj, str):
                    b.extend(obj.encode(encoding="utf-8"))
 
            # Convert the byte array to a Pandas "buffer" using
            # a NumPy array as the backing store
            buffer = PandasBuffer(np.frombuffer(b, dtype="uint8"))
 
            # Define the dtype for the returned buffer
            dtype = (
                DtypeKind.STRING,
                8,
                ArrowCTypes.STRING,
                Endianness.NATIVE,
            )  # note: currently only support native endianness
        else:
            raise NotImplementedError(f"Data type {self._col.dtype} not handled yet")
 
        return buffer, dtype
 
    def _get_validity_buffer(self) -> tuple[PandasBuffer, Any]:
        """
        Return the buffer containing the mask values indicating missing data and
        the buffer's associated dtype.
        Raises NoBufferPresent if null representation is not a bit or byte mask.
        """
        null, invalid = self.describe_null
 
        if self.dtype[0] == DtypeKind.STRING:
            # For now, use byte array as the mask.
            # TODO: maybe store as bit array to save space?..
            buf = self._col.to_numpy()
 
            # Determine the encoding for valid values
            valid = invalid == 0
            invalid = not valid
 
            mask = np.zeros(shape=(len(buf),), dtype=np.bool_)
            for i, obj in enumerate(buf):
                mask[i] = valid if isinstance(obj, str) else invalid
 
            # Convert the mask array to a Pandas "buffer" using
            # a NumPy array as the backing store
            buffer = PandasBuffer(mask)
 
            # Define the dtype of the returned buffer
            dtype = (DtypeKind.BOOL, 8, ArrowCTypes.BOOL, Endianness.NATIVE)
 
            return buffer, dtype
 
        try:
            msg = f"{_NO_VALIDITY_BUFFER[null]} so does not have a separate mask"
        except KeyError:
            # TODO: implement for other bit/byte masks?
            raise NotImplementedError("See self.describe_null")
 
        raise NoBufferPresent(msg)
 
    def _get_offsets_buffer(self) -> tuple[PandasBuffer, Any]:
        """
        Return the buffer containing the offset values for variable-size binary
        data (e.g., variable-length strings) and the buffer's associated dtype.
        Raises NoBufferPresent if the data buffer does not have an associated
        offsets buffer.
        """
        if self.dtype[0] == DtypeKind.STRING:
            # For each string, we need to manually determine the next offset
            values = self._col.to_numpy()
            ptr = 0
            offsets = np.zeros(shape=(len(values) + 1,), dtype=np.int64)
            for i, v in enumerate(values):
                # For missing values (in this case, `np.nan` values)
                # we don't increment the pointer
                if isinstance(v, str):
                    b = v.encode(encoding="utf-8")
                    ptr += len(b)
 
                offsets[i + 1] = ptr
 
            # Convert the offsets to a Pandas "buffer" using
            # the NumPy array as the backing store
            buffer = PandasBuffer(offsets)
 
            # Assemble the buffer dtype info
            dtype = (
                DtypeKind.INT,
                64,
                ArrowCTypes.INT64,
                Endianness.NATIVE,
            )  # note: currently only support native endianness
        else:
            raise NoBufferPresent(
                "This column has a fixed-length dtype so "
                "it does not have an offsets buffer"
            )
 
        return buffer, dtype