1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
"""Sparse accessor"""
from __future__ import annotations
 
from typing import TYPE_CHECKING
 
import numpy as np
 
from pandas.compat._optional import import_optional_dependency
 
from pandas.core.dtypes.cast import find_common_type
 
from pandas.core.accessor import (
    PandasDelegate,
    delegate_names,
)
from pandas.core.arrays.sparse.array import SparseArray
from pandas.core.arrays.sparse.dtype import SparseDtype
 
if TYPE_CHECKING:
    from pandas import (
        DataFrame,
        Series,
    )
 
 
class BaseAccessor:
    _validation_msg = "Can only use the '.sparse' accessor with Sparse data."
 
    def __init__(self, data=None) -> None:
        self._parent = data
        self._validate(data)
 
    def _validate(self, data):
        raise NotImplementedError
 
 
@delegate_names(
    SparseArray, ["npoints", "density", "fill_value", "sp_values"], typ="property"
)
class SparseAccessor(BaseAccessor, PandasDelegate):
    """
    Accessor for SparseSparse from other sparse matrix data types.
    """
 
    def _validate(self, data):
        if not isinstance(data.dtype, SparseDtype):
            raise AttributeError(self._validation_msg)
 
    def _delegate_property_get(self, name, *args, **kwargs):
        return getattr(self._parent.array, name)
 
    def _delegate_method(self, name, *args, **kwargs):
        if name == "from_coo":
            return self.from_coo(*args, **kwargs)
        elif name == "to_coo":
            return self.to_coo(*args, **kwargs)
        else:
            raise ValueError
 
    @classmethod
    def from_coo(cls, A, dense_index: bool = False) -> Series:
        """
        Create a Series with sparse values from a scipy.sparse.coo_matrix.
 
        Parameters
        ----------
        A : scipy.sparse.coo_matrix
        dense_index : bool, default False
            If False (default), the index consists of only the
            coords of the non-null entries of the original coo_matrix.
            If True, the index consists of the full sorted
            (row, col) coordinates of the coo_matrix.
 
        Returns
        -------
        s : Series
            A Series with sparse values.
 
        Examples
        --------
        >>> from scipy import sparse
 
        >>> A = sparse.coo_matrix(
        ...     ([3.0, 1.0, 2.0], ([1, 0, 0], [0, 2, 3])), shape=(3, 4)
        ... )
        >>> A
        <3x4 sparse matrix of type '<class 'numpy.float64'>'
        with 3 stored elements in COOrdinate format>
 
        >>> A.todense()
        matrix([[0., 0., 1., 2.],
        [3., 0., 0., 0.],
        [0., 0., 0., 0.]])
 
        >>> ss = pd.Series.sparse.from_coo(A)
        >>> ss
        0  2    1.0
           3    2.0
        1  0    3.0
        dtype: Sparse[float64, nan]
        """
        from pandas import Series
        from pandas.core.arrays.sparse.scipy_sparse import coo_to_sparse_series
 
        result = coo_to_sparse_series(A, dense_index=dense_index)
        result = Series(result.array, index=result.index, copy=False)
 
        return result
 
    def to_coo(self, row_levels=(0,), column_levels=(1,), sort_labels: bool = False):
        """
        Create a scipy.sparse.coo_matrix from a Series with MultiIndex.
 
        Use row_levels and column_levels to determine the row and column
        coordinates respectively. row_levels and column_levels are the names
        (labels) or numbers of the levels. {row_levels, column_levels} must be
        a partition of the MultiIndex level names (or numbers).
 
        Parameters
        ----------
        row_levels : tuple/list
        column_levels : tuple/list
        sort_labels : bool, default False
            Sort the row and column labels before forming the sparse matrix.
            When `row_levels` and/or `column_levels` refer to a single level,
            set to `True` for a faster execution.
 
        Returns
        -------
        y : scipy.sparse.coo_matrix
        rows : list (row labels)
        columns : list (column labels)
 
        Examples
        --------
        >>> s = pd.Series([3.0, np.nan, 1.0, 3.0, np.nan, np.nan])
        >>> s.index = pd.MultiIndex.from_tuples(
        ...     [
        ...         (1, 2, "a", 0),
        ...         (1, 2, "a", 1),
        ...         (1, 1, "b", 0),
        ...         (1, 1, "b", 1),
        ...         (2, 1, "b", 0),
        ...         (2, 1, "b", 1)
        ...     ],
        ...     names=["A", "B", "C", "D"],
        ... )
        >>> s
        A  B  C  D
        1  2  a  0    3.0
                 1    NaN
           1  b  0    1.0
                 1    3.0
        2  1  b  0    NaN
                 1    NaN
        dtype: float64
 
        >>> ss = s.astype("Sparse")
        >>> ss
        A  B  C  D
        1  2  a  0    3.0
                 1    NaN
           1  b  0    1.0
                 1    3.0
        2  1  b  0    NaN
                 1    NaN
        dtype: Sparse[float64, nan]
 
        >>> A, rows, columns = ss.sparse.to_coo(
        ...     row_levels=["A", "B"], column_levels=["C", "D"], sort_labels=True
        ... )
        >>> A
        <3x4 sparse matrix of type '<class 'numpy.float64'>'
        with 3 stored elements in COOrdinate format>
        >>> A.todense()
        matrix([[0., 0., 1., 3.],
        [3., 0., 0., 0.],
        [0., 0., 0., 0.]])
 
        >>> rows
        [(1, 1), (1, 2), (2, 1)]
        >>> columns
        [('a', 0), ('a', 1), ('b', 0), ('b', 1)]
        """
        from pandas.core.arrays.sparse.scipy_sparse import sparse_series_to_coo
 
        A, rows, columns = sparse_series_to_coo(
            self._parent, row_levels, column_levels, sort_labels=sort_labels
        )
        return A, rows, columns
 
    def to_dense(self) -> Series:
        """
        Convert a Series from sparse values to dense.
 
        Returns
        -------
        Series:
            A Series with the same values, stored as a dense array.
 
        Examples
        --------
        >>> series = pd.Series(pd.arrays.SparseArray([0, 1, 0]))
        >>> series
        0    0
        1    1
        2    0
        dtype: Sparse[int64, 0]
 
        >>> series.sparse.to_dense()
        0    0
        1    1
        2    0
        dtype: int64
        """
        from pandas import Series
 
        return Series(
            self._parent.array.to_dense(),
            index=self._parent.index,
            name=self._parent.name,
            copy=False,
        )
 
 
class SparseFrameAccessor(BaseAccessor, PandasDelegate):
    """
    DataFrame accessor for sparse data.
    """
 
    def _validate(self, data):
        dtypes = data.dtypes
        if not all(isinstance(t, SparseDtype) for t in dtypes):
            raise AttributeError(self._validation_msg)
 
    @classmethod
    def from_spmatrix(cls, data, index=None, columns=None) -> DataFrame:
        """
        Create a new DataFrame from a scipy sparse matrix.
 
        Parameters
        ----------
        data : scipy.sparse.spmatrix
            Must be convertible to csc format.
        index, columns : Index, optional
            Row and column labels to use for the resulting DataFrame.
            Defaults to a RangeIndex.
 
        Returns
        -------
        DataFrame
            Each column of the DataFrame is stored as a
            :class:`arrays.SparseArray`.
 
        Examples
        --------
        >>> import scipy.sparse
        >>> mat = scipy.sparse.eye(3)
        >>> pd.DataFrame.sparse.from_spmatrix(mat)
             0    1    2
        0  1.0  0.0  0.0
        1  0.0  1.0  0.0
        2  0.0  0.0  1.0
        """
        from pandas._libs.sparse import IntIndex
 
        from pandas import DataFrame
 
        data = data.tocsc()
        index, columns = cls._prep_index(data, index, columns)
        n_rows, n_columns = data.shape
        # We need to make sure indices are sorted, as we create
        # IntIndex with no input validation (i.e. check_integrity=False ).
        # Indices may already be sorted in scipy in which case this adds
        # a small overhead.
        data.sort_indices()
        indices = data.indices
        indptr = data.indptr
        array_data = data.data
        dtype = SparseDtype(array_data.dtype, 0)
        arrays = []
        for i in range(n_columns):
            sl = slice(indptr[i], indptr[i + 1])
            idx = IntIndex(n_rows, indices[sl], check_integrity=False)
            arr = SparseArray._simple_new(array_data[sl], idx, dtype)
            arrays.append(arr)
        return DataFrame._from_arrays(
            arrays, columns=columns, index=index, verify_integrity=False
        )
 
    def to_dense(self) -> DataFrame:
        """
        Convert a DataFrame with sparse values to dense.
 
        Returns
        -------
        DataFrame
            A DataFrame with the same values stored as dense arrays.
 
        Examples
        --------
        >>> df = pd.DataFrame({"A": pd.arrays.SparseArray([0, 1, 0])})
        >>> df.sparse.to_dense()
           A
        0  0
        1  1
        2  0
        """
        from pandas import DataFrame
 
        data = {k: v.array.to_dense() for k, v in self._parent.items()}
        return DataFrame(data, index=self._parent.index, columns=self._parent.columns)
 
    def to_coo(self):
        """
        Return the contents of the frame as a sparse SciPy COO matrix.
 
        Returns
        -------
        scipy.sparse.spmatrix
            If the caller is heterogeneous and contains booleans or objects,
            the result will be of dtype=object. See Notes.
 
        Notes
        -----
        The dtype will be the lowest-common-denominator type (implicit
        upcasting); that is to say if the dtypes (even of numeric types)
        are mixed, the one that accommodates all will be chosen.
 
        e.g. If the dtypes are float16 and float32, dtype will be upcast to
        float32. By numpy.find_common_type convention, mixing int64 and
        and uint64 will result in a float64 dtype.
        """
        import_optional_dependency("scipy")
        from scipy.sparse import coo_matrix
 
        dtype = find_common_type(self._parent.dtypes.to_list())
        if isinstance(dtype, SparseDtype):
            dtype = dtype.subtype
 
        cols, rows, data = [], [], []
        for col, (_, ser) in enumerate(self._parent.items()):
            sp_arr = ser.array
            if sp_arr.fill_value != 0:
                raise ValueError("fill value must be 0 when converting to COO matrix")
 
            row = sp_arr.sp_index.indices
            cols.append(np.repeat(col, len(row)))
            rows.append(row)
            data.append(sp_arr.sp_values.astype(dtype, copy=False))
 
        cols = np.concatenate(cols)
        rows = np.concatenate(rows)
        data = np.concatenate(data)
        return coo_matrix((data, (rows, cols)), shape=self._parent.shape)
 
    @property
    def density(self) -> float:
        """
        Ratio of non-sparse points to total (dense) data points.
        """
        tmp = np.mean([column.array.density for _, column in self._parent.items()])
        return tmp
 
    @staticmethod
    def _prep_index(data, index, columns):
        from pandas.core.indexes.api import (
            default_index,
            ensure_index,
        )
 
        N, K = data.shape
        if index is None:
            index = default_index(N)
        else:
            index = ensure_index(index)
        if columns is None:
            columns = default_index(K)
        else:
            columns = ensure_index(columns)
 
        if len(columns) != K:
            raise ValueError(f"Column length mismatch: {len(columns)} vs. {K}")
        if len(index) != N:
            raise ValueError(f"Index length mismatch: {len(index)} vs. {N}")
        return index, columns