import sys
|
import operator
|
import pytest
|
import ctypes
|
import gc
|
import types
|
from typing import Any
|
|
import numpy as np
|
from numpy.core._rational_tests import rational
|
from numpy.core._multiarray_tests import create_custom_field_dtype
|
from numpy.testing import (
|
assert_, assert_equal, assert_array_equal, assert_raises, HAS_REFCOUNT,
|
IS_PYSTON, _OLD_PROMOTION)
|
from numpy.compat import pickle
|
from itertools import permutations
|
import random
|
|
import hypothesis
|
from hypothesis.extra import numpy as hynp
|
|
|
|
def assert_dtype_equal(a, b):
|
assert_equal(a, b)
|
assert_equal(hash(a), hash(b),
|
"two equivalent types do not hash to the same value !")
|
|
def assert_dtype_not_equal(a, b):
|
assert_(a != b)
|
assert_(hash(a) != hash(b),
|
"two different types hash to the same value !")
|
|
class TestBuiltin:
|
@pytest.mark.parametrize('t', [int, float, complex, np.int32, str, object,
|
np.compat.unicode])
|
def test_run(self, t):
|
"""Only test hash runs at all."""
|
dt = np.dtype(t)
|
hash(dt)
|
|
@pytest.mark.parametrize('t', [int, float])
|
def test_dtype(self, t):
|
# Make sure equivalent byte order char hash the same (e.g. < and = on
|
# little endian)
|
dt = np.dtype(t)
|
dt2 = dt.newbyteorder("<")
|
dt3 = dt.newbyteorder(">")
|
if dt == dt2:
|
assert_(dt.byteorder != dt2.byteorder, "bogus test")
|
assert_dtype_equal(dt, dt2)
|
else:
|
assert_(dt.byteorder != dt3.byteorder, "bogus test")
|
assert_dtype_equal(dt, dt3)
|
|
def test_equivalent_dtype_hashing(self):
|
# Make sure equivalent dtypes with different type num hash equal
|
uintp = np.dtype(np.uintp)
|
if uintp.itemsize == 4:
|
left = uintp
|
right = np.dtype(np.uint32)
|
else:
|
left = uintp
|
right = np.dtype(np.ulonglong)
|
assert_(left == right)
|
assert_(hash(left) == hash(right))
|
|
def test_invalid_types(self):
|
# Make sure invalid type strings raise an error
|
|
assert_raises(TypeError, np.dtype, 'O3')
|
assert_raises(TypeError, np.dtype, 'O5')
|
assert_raises(TypeError, np.dtype, 'O7')
|
assert_raises(TypeError, np.dtype, 'b3')
|
assert_raises(TypeError, np.dtype, 'h4')
|
assert_raises(TypeError, np.dtype, 'I5')
|
assert_raises(TypeError, np.dtype, 'e3')
|
assert_raises(TypeError, np.dtype, 'f5')
|
|
if np.dtype('g').itemsize == 8 or np.dtype('g').itemsize == 16:
|
assert_raises(TypeError, np.dtype, 'g12')
|
elif np.dtype('g').itemsize == 12:
|
assert_raises(TypeError, np.dtype, 'g16')
|
|
if np.dtype('l').itemsize == 8:
|
assert_raises(TypeError, np.dtype, 'l4')
|
assert_raises(TypeError, np.dtype, 'L4')
|
else:
|
assert_raises(TypeError, np.dtype, 'l8')
|
assert_raises(TypeError, np.dtype, 'L8')
|
|
if np.dtype('q').itemsize == 8:
|
assert_raises(TypeError, np.dtype, 'q4')
|
assert_raises(TypeError, np.dtype, 'Q4')
|
else:
|
assert_raises(TypeError, np.dtype, 'q8')
|
assert_raises(TypeError, np.dtype, 'Q8')
|
|
def test_richcompare_invalid_dtype_equality(self):
|
# Make sure objects that cannot be converted to valid
|
# dtypes results in False/True when compared to valid dtypes.
|
# Here 7 cannot be converted to dtype. No exceptions should be raised
|
|
assert not np.dtype(np.int32) == 7, "dtype richcompare failed for =="
|
assert np.dtype(np.int32) != 7, "dtype richcompare failed for !="
|
|
@pytest.mark.parametrize(
|
'operation',
|
[operator.le, operator.lt, operator.ge, operator.gt])
|
def test_richcompare_invalid_dtype_comparison(self, operation):
|
# Make sure TypeError is raised for comparison operators
|
# for invalid dtypes. Here 7 is an invalid dtype.
|
|
with pytest.raises(TypeError):
|
operation(np.dtype(np.int32), 7)
|
|
@pytest.mark.parametrize("dtype",
|
['Bool', 'Bytes0', 'Complex32', 'Complex64',
|
'Datetime64', 'Float16', 'Float32', 'Float64',
|
'Int8', 'Int16', 'Int32', 'Int64',
|
'Object0', 'Str0', 'Timedelta64',
|
'UInt8', 'UInt16', 'Uint32', 'UInt32',
|
'Uint64', 'UInt64', 'Void0',
|
"Float128", "Complex128"])
|
def test_numeric_style_types_are_invalid(self, dtype):
|
with assert_raises(TypeError):
|
np.dtype(dtype)
|
|
def test_remaining_dtypes_with_bad_bytesize(self):
|
# The np.<name> aliases were deprecated, these probably should be too
|
assert np.dtype("int0") is np.dtype("intp")
|
assert np.dtype("uint0") is np.dtype("uintp")
|
assert np.dtype("bool8") is np.dtype("bool")
|
assert np.dtype("bytes0") is np.dtype("bytes")
|
assert np.dtype("str0") is np.dtype("str")
|
assert np.dtype("object0") is np.dtype("object")
|
|
@pytest.mark.parametrize(
|
'value',
|
['m8', 'M8', 'datetime64', 'timedelta64',
|
'i4, (2,3)f8, f4', 'a3, 3u8, (3,4)a10',
|
'>f', '<f', '=f', '|f',
|
])
|
def test_dtype_bytes_str_equivalence(self, value):
|
bytes_value = value.encode('ascii')
|
from_bytes = np.dtype(bytes_value)
|
from_str = np.dtype(value)
|
assert_dtype_equal(from_bytes, from_str)
|
|
def test_dtype_from_bytes(self):
|
# Empty bytes object
|
assert_raises(TypeError, np.dtype, b'')
|
# Byte order indicator, but no type
|
assert_raises(TypeError, np.dtype, b'|')
|
|
# Single character with ordinal < NPY_NTYPES returns
|
# type by index into _builtin_descrs
|
assert_dtype_equal(np.dtype(bytes([0])), np.dtype('bool'))
|
assert_dtype_equal(np.dtype(bytes([17])), np.dtype(object))
|
|
# Single character where value is a valid type code
|
assert_dtype_equal(np.dtype(b'f'), np.dtype('float32'))
|
|
# Bytes with non-ascii values raise errors
|
assert_raises(TypeError, np.dtype, b'\xff')
|
assert_raises(TypeError, np.dtype, b's\xff')
|
|
def test_bad_param(self):
|
# Can't give a size that's too small
|
assert_raises(ValueError, np.dtype,
|
{'names':['f0', 'f1'],
|
'formats':['i4', 'i1'],
|
'offsets':[0, 4],
|
'itemsize':4})
|
# If alignment is enabled, the alignment (4) must divide the itemsize
|
assert_raises(ValueError, np.dtype,
|
{'names':['f0', 'f1'],
|
'formats':['i4', 'i1'],
|
'offsets':[0, 4],
|
'itemsize':9}, align=True)
|
# If alignment is enabled, the individual fields must be aligned
|
assert_raises(ValueError, np.dtype,
|
{'names':['f0', 'f1'],
|
'formats':['i1', 'f4'],
|
'offsets':[0, 2]}, align=True)
|
|
def test_field_order_equality(self):
|
x = np.dtype({'names': ['A', 'B'],
|
'formats': ['i4', 'f4'],
|
'offsets': [0, 4]})
|
y = np.dtype({'names': ['B', 'A'],
|
'formats': ['i4', 'f4'],
|
'offsets': [4, 0]})
|
assert_equal(x == y, False)
|
# This is an safe cast (not equiv) due to the different names:
|
assert np.can_cast(x, y, casting="safe")
|
|
|
class TestRecord:
|
def test_equivalent_record(self):
|
"""Test whether equivalent record dtypes hash the same."""
|
a = np.dtype([('yo', int)])
|
b = np.dtype([('yo', int)])
|
assert_dtype_equal(a, b)
|
|
def test_different_names(self):
|
# In theory, they may hash the same (collision) ?
|
a = np.dtype([('yo', int)])
|
b = np.dtype([('ye', int)])
|
assert_dtype_not_equal(a, b)
|
|
def test_different_titles(self):
|
# In theory, they may hash the same (collision) ?
|
a = np.dtype({'names': ['r', 'b'],
|
'formats': ['u1', 'u1'],
|
'titles': ['Red pixel', 'Blue pixel']})
|
b = np.dtype({'names': ['r', 'b'],
|
'formats': ['u1', 'u1'],
|
'titles': ['RRed pixel', 'Blue pixel']})
|
assert_dtype_not_equal(a, b)
|
|
@pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts")
|
def test_refcount_dictionary_setting(self):
|
names = ["name1"]
|
formats = ["f8"]
|
titles = ["t1"]
|
offsets = [0]
|
d = dict(names=names, formats=formats, titles=titles, offsets=offsets)
|
refcounts = {k: sys.getrefcount(i) for k, i in d.items()}
|
np.dtype(d)
|
refcounts_new = {k: sys.getrefcount(i) for k, i in d.items()}
|
assert refcounts == refcounts_new
|
|
def test_mutate(self):
|
# Mutating a dtype should reset the cached hash value.
|
# NOTE: Mutating should be deprecated, but new API added to replace it.
|
a = np.dtype([('yo', int)])
|
b = np.dtype([('yo', int)])
|
c = np.dtype([('ye', int)])
|
assert_dtype_equal(a, b)
|
assert_dtype_not_equal(a, c)
|
a.names = ['ye']
|
assert_dtype_equal(a, c)
|
assert_dtype_not_equal(a, b)
|
state = b.__reduce__()[2]
|
a.__setstate__(state)
|
assert_dtype_equal(a, b)
|
assert_dtype_not_equal(a, c)
|
|
def test_mutate_error(self):
|
# NOTE: Mutating should be deprecated, but new API added to replace it.
|
a = np.dtype("i,i")
|
|
with pytest.raises(ValueError, match="must replace all names at once"):
|
a.names = ["f0"]
|
|
with pytest.raises(ValueError, match=".*and not string"):
|
a.names = ["f0", b"not a unicode name"]
|
|
def test_not_lists(self):
|
"""Test if an appropriate exception is raised when passing bad values to
|
the dtype constructor.
|
"""
|
assert_raises(TypeError, np.dtype,
|
dict(names={'A', 'B'}, formats=['f8', 'i4']))
|
assert_raises(TypeError, np.dtype,
|
dict(names=['A', 'B'], formats={'f8', 'i4'}))
|
|
def test_aligned_size(self):
|
# Check that structured dtypes get padded to an aligned size
|
dt = np.dtype('i4, i1', align=True)
|
assert_equal(dt.itemsize, 8)
|
dt = np.dtype([('f0', 'i4'), ('f1', 'i1')], align=True)
|
assert_equal(dt.itemsize, 8)
|
dt = np.dtype({'names':['f0', 'f1'],
|
'formats':['i4', 'u1'],
|
'offsets':[0, 4]}, align=True)
|
assert_equal(dt.itemsize, 8)
|
dt = np.dtype({'f0': ('i4', 0), 'f1':('u1', 4)}, align=True)
|
assert_equal(dt.itemsize, 8)
|
# Nesting should preserve that alignment
|
dt1 = np.dtype([('f0', 'i4'),
|
('f1', [('f1', 'i1'), ('f2', 'i4'), ('f3', 'i1')]),
|
('f2', 'i1')], align=True)
|
assert_equal(dt1.itemsize, 20)
|
dt2 = np.dtype({'names':['f0', 'f1', 'f2'],
|
'formats':['i4',
|
[('f1', 'i1'), ('f2', 'i4'), ('f3', 'i1')],
|
'i1'],
|
'offsets':[0, 4, 16]}, align=True)
|
assert_equal(dt2.itemsize, 20)
|
dt3 = np.dtype({'f0': ('i4', 0),
|
'f1': ([('f1', 'i1'), ('f2', 'i4'), ('f3', 'i1')], 4),
|
'f2': ('i1', 16)}, align=True)
|
assert_equal(dt3.itemsize, 20)
|
assert_equal(dt1, dt2)
|
assert_equal(dt2, dt3)
|
# Nesting should preserve packing
|
dt1 = np.dtype([('f0', 'i4'),
|
('f1', [('f1', 'i1'), ('f2', 'i4'), ('f3', 'i1')]),
|
('f2', 'i1')], align=False)
|
assert_equal(dt1.itemsize, 11)
|
dt2 = np.dtype({'names':['f0', 'f1', 'f2'],
|
'formats':['i4',
|
[('f1', 'i1'), ('f2', 'i4'), ('f3', 'i1')],
|
'i1'],
|
'offsets':[0, 4, 10]}, align=False)
|
assert_equal(dt2.itemsize, 11)
|
dt3 = np.dtype({'f0': ('i4', 0),
|
'f1': ([('f1', 'i1'), ('f2', 'i4'), ('f3', 'i1')], 4),
|
'f2': ('i1', 10)}, align=False)
|
assert_equal(dt3.itemsize, 11)
|
assert_equal(dt1, dt2)
|
assert_equal(dt2, dt3)
|
# Array of subtype should preserve alignment
|
dt1 = np.dtype([('a', '|i1'),
|
('b', [('f0', '<i2'),
|
('f1', '<f4')], 2)], align=True)
|
assert_equal(dt1.descr, [('a', '|i1'), ('', '|V3'),
|
('b', [('f0', '<i2'), ('', '|V2'),
|
('f1', '<f4')], (2,))])
|
|
def test_union_struct(self):
|
# Should be able to create union dtypes
|
dt = np.dtype({'names':['f0', 'f1', 'f2'], 'formats':['<u4', '<u2', '<u2'],
|
'offsets':[0, 0, 2]}, align=True)
|
assert_equal(dt.itemsize, 4)
|
a = np.array([3], dtype='<u4').view(dt)
|
a['f1'] = 10
|
a['f2'] = 36
|
assert_equal(a['f0'], 10 + 36*256*256)
|
# Should be able to specify fields out of order
|
dt = np.dtype({'names':['f0', 'f1', 'f2'], 'formats':['<u4', '<u2', '<u2'],
|
'offsets':[4, 0, 2]}, align=True)
|
assert_equal(dt.itemsize, 8)
|
# field name should not matter: assignment is by position
|
dt2 = np.dtype({'names':['f2', 'f0', 'f1'],
|
'formats':['<u4', '<u2', '<u2'],
|
'offsets':[4, 0, 2]}, align=True)
|
vals = [(0, 1, 2), (3, 2**15-1, 4)]
|
vals2 = [(0, 1, 2), (3, 2**15-1, 4)]
|
a = np.array(vals, dt)
|
b = np.array(vals2, dt2)
|
assert_equal(a.astype(dt2), b)
|
assert_equal(b.astype(dt), a)
|
assert_equal(a.view(dt2), b)
|
assert_equal(b.view(dt), a)
|
# Should not be able to overlap objects with other types
|
assert_raises(TypeError, np.dtype,
|
{'names':['f0', 'f1'],
|
'formats':['O', 'i1'],
|
'offsets':[0, 2]})
|
assert_raises(TypeError, np.dtype,
|
{'names':['f0', 'f1'],
|
'formats':['i4', 'O'],
|
'offsets':[0, 3]})
|
assert_raises(TypeError, np.dtype,
|
{'names':['f0', 'f1'],
|
'formats':[[('a', 'O')], 'i1'],
|
'offsets':[0, 2]})
|
assert_raises(TypeError, np.dtype,
|
{'names':['f0', 'f1'],
|
'formats':['i4', [('a', 'O')]],
|
'offsets':[0, 3]})
|
# Out of order should still be ok, however
|
dt = np.dtype({'names':['f0', 'f1'],
|
'formats':['i1', 'O'],
|
'offsets':[np.dtype('intp').itemsize, 0]})
|
|
@pytest.mark.parametrize(["obj", "dtype", "expected"],
|
[([], ("(2)f4,"), np.empty((0, 2), dtype="f4")),
|
(3, "(3)f4,", [3, 3, 3]),
|
(np.float64(2), "(2)f4,", [2, 2]),
|
([((0, 1), (1, 2)), ((2,),)], '(2,2)f4', None),
|
(["1", "2"], "(2)i,", None)])
|
def test_subarray_list(self, obj, dtype, expected):
|
dtype = np.dtype(dtype)
|
res = np.array(obj, dtype=dtype)
|
|
if expected is None:
|
# iterate the 1-d list to fill the array
|
expected = np.empty(len(obj), dtype=dtype)
|
for i in range(len(expected)):
|
expected[i] = obj[i]
|
|
assert_array_equal(res, expected)
|
|
def test_comma_datetime(self):
|
dt = np.dtype('M8[D],datetime64[Y],i8')
|
assert_equal(dt, np.dtype([('f0', 'M8[D]'),
|
('f1', 'datetime64[Y]'),
|
('f2', 'i8')]))
|
|
def test_from_dictproxy(self):
|
# Tests for PR #5920
|
dt = np.dtype({'names': ['a', 'b'], 'formats': ['i4', 'f4']})
|
assert_dtype_equal(dt, np.dtype(dt.fields))
|
dt2 = np.dtype((np.void, dt.fields))
|
assert_equal(dt2.fields, dt.fields)
|
|
def test_from_dict_with_zero_width_field(self):
|
# Regression test for #6430 / #2196
|
dt = np.dtype([('val1', np.float32, (0,)), ('val2', int)])
|
dt2 = np.dtype({'names': ['val1', 'val2'],
|
'formats': [(np.float32, (0,)), int]})
|
|
assert_dtype_equal(dt, dt2)
|
assert_equal(dt.fields['val1'][0].itemsize, 0)
|
assert_equal(dt.itemsize, dt.fields['val2'][0].itemsize)
|
|
def test_bool_commastring(self):
|
d = np.dtype('?,?,?') # raises?
|
assert_equal(len(d.names), 3)
|
for n in d.names:
|
assert_equal(d.fields[n][0], np.dtype('?'))
|
|
def test_nonint_offsets(self):
|
# gh-8059
|
def make_dtype(off):
|
return np.dtype({'names': ['A'], 'formats': ['i4'],
|
'offsets': [off]})
|
|
assert_raises(TypeError, make_dtype, 'ASD')
|
assert_raises(OverflowError, make_dtype, 2**70)
|
assert_raises(TypeError, make_dtype, 2.3)
|
assert_raises(ValueError, make_dtype, -10)
|
|
# no errors here:
|
dt = make_dtype(np.uint32(0))
|
np.zeros(1, dtype=dt)[0].item()
|
|
def test_fields_by_index(self):
|
dt = np.dtype([('a', np.int8), ('b', np.float32, 3)])
|
assert_dtype_equal(dt[0], np.dtype(np.int8))
|
assert_dtype_equal(dt[1], np.dtype((np.float32, 3)))
|
assert_dtype_equal(dt[-1], dt[1])
|
assert_dtype_equal(dt[-2], dt[0])
|
assert_raises(IndexError, lambda: dt[-3])
|
|
assert_raises(TypeError, operator.getitem, dt, 3.0)
|
|
assert_equal(dt[1], dt[np.int8(1)])
|
|
@pytest.mark.parametrize('align_flag',[False, True])
|
def test_multifield_index(self, align_flag):
|
# indexing with a list produces subfields
|
# the align flag should be preserved
|
dt = np.dtype([
|
(('title', 'col1'), '<U20'), ('A', '<f8'), ('B', '<f8')
|
], align=align_flag)
|
|
dt_sub = dt[['B', 'col1']]
|
assert_equal(
|
dt_sub,
|
np.dtype({
|
'names': ['B', 'col1'],
|
'formats': ['<f8', '<U20'],
|
'offsets': [88, 0],
|
'titles': [None, 'title'],
|
'itemsize': 96
|
})
|
)
|
assert_equal(dt_sub.isalignedstruct, align_flag)
|
|
dt_sub = dt[['B']]
|
assert_equal(
|
dt_sub,
|
np.dtype({
|
'names': ['B'],
|
'formats': ['<f8'],
|
'offsets': [88],
|
'itemsize': 96
|
})
|
)
|
assert_equal(dt_sub.isalignedstruct, align_flag)
|
|
dt_sub = dt[[]]
|
assert_equal(
|
dt_sub,
|
np.dtype({
|
'names': [],
|
'formats': [],
|
'offsets': [],
|
'itemsize': 96
|
})
|
)
|
assert_equal(dt_sub.isalignedstruct, align_flag)
|
|
assert_raises(TypeError, operator.getitem, dt, ())
|
assert_raises(TypeError, operator.getitem, dt, [1, 2, 3])
|
assert_raises(TypeError, operator.getitem, dt, ['col1', 2])
|
assert_raises(KeyError, operator.getitem, dt, ['fake'])
|
assert_raises(KeyError, operator.getitem, dt, ['title'])
|
assert_raises(ValueError, operator.getitem, dt, ['col1', 'col1'])
|
|
def test_partial_dict(self):
|
# 'names' is missing
|
assert_raises(ValueError, np.dtype,
|
{'formats': ['i4', 'i4'], 'f0': ('i4', 0), 'f1':('i4', 4)})
|
|
def test_fieldless_views(self):
|
a = np.zeros(2, dtype={'names':[], 'formats':[], 'offsets':[],
|
'itemsize':8})
|
assert_raises(ValueError, a.view, np.dtype([]))
|
|
d = np.dtype((np.dtype([]), 10))
|
assert_equal(d.shape, (10,))
|
assert_equal(d.itemsize, 0)
|
assert_equal(d.base, np.dtype([]))
|
|
arr = np.fromiter((() for i in range(10)), [])
|
assert_equal(arr.dtype, np.dtype([]))
|
assert_raises(ValueError, np.frombuffer, b'', dtype=[])
|
assert_equal(np.frombuffer(b'', dtype=[], count=2),
|
np.empty(2, dtype=[]))
|
|
assert_raises(ValueError, np.dtype, ([], 'f8'))
|
assert_raises(ValueError, np.zeros(1, dtype='i4').view, [])
|
|
assert_equal(np.zeros(2, dtype=[]) == np.zeros(2, dtype=[]),
|
np.ones(2, dtype=bool))
|
|
assert_equal(np.zeros((1, 2), dtype=[]) == a,
|
np.ones((1, 2), dtype=bool))
|
|
|
class TestSubarray:
|
def test_single_subarray(self):
|
a = np.dtype((int, (2)))
|
b = np.dtype((int, (2,)))
|
assert_dtype_equal(a, b)
|
|
assert_equal(type(a.subdtype[1]), tuple)
|
assert_equal(type(b.subdtype[1]), tuple)
|
|
def test_equivalent_record(self):
|
"""Test whether equivalent subarray dtypes hash the same."""
|
a = np.dtype((int, (2, 3)))
|
b = np.dtype((int, (2, 3)))
|
assert_dtype_equal(a, b)
|
|
def test_nonequivalent_record(self):
|
"""Test whether different subarray dtypes hash differently."""
|
a = np.dtype((int, (2, 3)))
|
b = np.dtype((int, (3, 2)))
|
assert_dtype_not_equal(a, b)
|
|
a = np.dtype((int, (2, 3)))
|
b = np.dtype((int, (2, 2)))
|
assert_dtype_not_equal(a, b)
|
|
a = np.dtype((int, (1, 2, 3)))
|
b = np.dtype((int, (1, 2)))
|
assert_dtype_not_equal(a, b)
|
|
def test_shape_equal(self):
|
"""Test some data types that are equal"""
|
assert_dtype_equal(np.dtype('f8'), np.dtype(('f8', tuple())))
|
# FutureWarning during deprecation period; after it is passed this
|
# should instead check that "(1)f8" == "1f8" == ("f8", 1).
|
with pytest.warns(FutureWarning):
|
assert_dtype_equal(np.dtype('f8'), np.dtype(('f8', 1)))
|
assert_dtype_equal(np.dtype((int, 2)), np.dtype((int, (2,))))
|
assert_dtype_equal(np.dtype(('<f4', (3, 2))), np.dtype(('<f4', (3, 2))))
|
d = ([('a', 'f4', (1, 2)), ('b', 'f8', (3, 1))], (3, 2))
|
assert_dtype_equal(np.dtype(d), np.dtype(d))
|
|
def test_shape_simple(self):
|
"""Test some simple cases that shouldn't be equal"""
|
assert_dtype_not_equal(np.dtype('f8'), np.dtype(('f8', (1,))))
|
assert_dtype_not_equal(np.dtype(('f8', (1,))), np.dtype(('f8', (1, 1))))
|
assert_dtype_not_equal(np.dtype(('f4', (3, 2))), np.dtype(('f4', (2, 3))))
|
|
def test_shape_monster(self):
|
"""Test some more complicated cases that shouldn't be equal"""
|
assert_dtype_not_equal(
|
np.dtype(([('a', 'f4', (2, 1)), ('b', 'f8', (1, 3))], (2, 2))),
|
np.dtype(([('a', 'f4', (1, 2)), ('b', 'f8', (1, 3))], (2, 2))))
|
assert_dtype_not_equal(
|
np.dtype(([('a', 'f4', (2, 1)), ('b', 'f8', (1, 3))], (2, 2))),
|
np.dtype(([('a', 'f4', (2, 1)), ('b', 'i8', (1, 3))], (2, 2))))
|
assert_dtype_not_equal(
|
np.dtype(([('a', 'f4', (2, 1)), ('b', 'f8', (1, 3))], (2, 2))),
|
np.dtype(([('e', 'f8', (1, 3)), ('d', 'f4', (2, 1))], (2, 2))))
|
assert_dtype_not_equal(
|
np.dtype(([('a', [('a', 'i4', 6)], (2, 1)), ('b', 'f8', (1, 3))], (2, 2))),
|
np.dtype(([('a', [('a', 'u4', 6)], (2, 1)), ('b', 'f8', (1, 3))], (2, 2))))
|
|
def test_shape_sequence(self):
|
# Any sequence of integers should work as shape, but the result
|
# should be a tuple (immutable) of base type integers.
|
a = np.array([1, 2, 3], dtype=np.int16)
|
l = [1, 2, 3]
|
# Array gets converted
|
dt = np.dtype([('a', 'f4', a)])
|
assert_(isinstance(dt['a'].shape, tuple))
|
assert_(isinstance(dt['a'].shape[0], int))
|
# List gets converted
|
dt = np.dtype([('a', 'f4', l)])
|
assert_(isinstance(dt['a'].shape, tuple))
|
#
|
|
class IntLike:
|
def __index__(self):
|
return 3
|
|
def __int__(self):
|
# (a PyNumber_Check fails without __int__)
|
return 3
|
|
dt = np.dtype([('a', 'f4', IntLike())])
|
assert_(isinstance(dt['a'].shape, tuple))
|
assert_(isinstance(dt['a'].shape[0], int))
|
dt = np.dtype([('a', 'f4', (IntLike(),))])
|
assert_(isinstance(dt['a'].shape, tuple))
|
assert_(isinstance(dt['a'].shape[0], int))
|
|
def test_shape_matches_ndim(self):
|
dt = np.dtype([('a', 'f4', ())])
|
assert_equal(dt['a'].shape, ())
|
assert_equal(dt['a'].ndim, 0)
|
|
dt = np.dtype([('a', 'f4')])
|
assert_equal(dt['a'].shape, ())
|
assert_equal(dt['a'].ndim, 0)
|
|
dt = np.dtype([('a', 'f4', 4)])
|
assert_equal(dt['a'].shape, (4,))
|
assert_equal(dt['a'].ndim, 1)
|
|
dt = np.dtype([('a', 'f4', (1, 2, 3))])
|
assert_equal(dt['a'].shape, (1, 2, 3))
|
assert_equal(dt['a'].ndim, 3)
|
|
def test_shape_invalid(self):
|
# Check that the shape is valid.
|
max_int = np.iinfo(np.intc).max
|
max_intp = np.iinfo(np.intp).max
|
# Too large values (the datatype is part of this)
|
assert_raises(ValueError, np.dtype, [('a', 'f4', max_int // 4 + 1)])
|
assert_raises(ValueError, np.dtype, [('a', 'f4', max_int + 1)])
|
assert_raises(ValueError, np.dtype, [('a', 'f4', (max_int, 2))])
|
# Takes a different code path (fails earlier:
|
assert_raises(ValueError, np.dtype, [('a', 'f4', max_intp + 1)])
|
# Negative values
|
assert_raises(ValueError, np.dtype, [('a', 'f4', -1)])
|
assert_raises(ValueError, np.dtype, [('a', 'f4', (-1, -1))])
|
|
def test_alignment(self):
|
#Check that subarrays are aligned
|
t1 = np.dtype('(1,)i4', align=True)
|
t2 = np.dtype('2i4', align=True)
|
assert_equal(t1.alignment, t2.alignment)
|
|
def test_aligned_empty(self):
|
# Mainly regression test for gh-19696: construction failed completely
|
dt = np.dtype([], align=True)
|
assert dt == np.dtype([])
|
dt = np.dtype({"names": [], "formats": [], "itemsize": 0}, align=True)
|
assert dt == np.dtype([])
|
|
def test_subarray_base_item(self):
|
arr = np.ones(3, dtype=[("f", "i", 3)])
|
# Extracting the field "absorbs" the subarray into a view:
|
assert arr["f"].base is arr
|
# Extract the structured item, and then check the tuple component:
|
item = arr.item(0)
|
assert type(item) is tuple and len(item) == 1
|
assert item[0].base is arr
|
|
def test_subarray_cast_copies(self):
|
# Older versions of NumPy did NOT copy, but they got the ownership
|
# wrong (not actually knowing the correct base!). Versions since 1.21
|
# (I think) crashed fairly reliable. This defines the correct behavior
|
# as a copy. Keeping the ownership would be possible (but harder)
|
arr = np.ones(3, dtype=[("f", "i", 3)])
|
cast = arr.astype(object)
|
for fields in cast:
|
assert type(fields) == tuple and len(fields) == 1
|
subarr = fields[0]
|
assert subarr.base is None
|
assert subarr.flags.owndata
|
|
|
def iter_struct_object_dtypes():
|
"""
|
Iterates over a few complex dtypes and object pattern which
|
fill the array with a given object (defaults to a singleton).
|
|
Yields
|
------
|
dtype : dtype
|
pattern : tuple
|
Structured tuple for use with `np.array`.
|
count : int
|
Number of objects stored in the dtype.
|
singleton : object
|
A singleton object. The returned pattern is constructed so that
|
all objects inside the datatype are set to the singleton.
|
"""
|
obj = object()
|
|
dt = np.dtype([('b', 'O', (2, 3))])
|
p = ([[obj] * 3] * 2,)
|
yield pytest.param(dt, p, 6, obj, id="<subarray>")
|
|
dt = np.dtype([('a', 'i4'), ('b', 'O', (2, 3))])
|
p = (0, [[obj] * 3] * 2)
|
yield pytest.param(dt, p, 6, obj, id="<subarray in field>")
|
|
dt = np.dtype([('a', 'i4'),
|
('b', [('ba', 'O'), ('bb', 'i1')], (2, 3))])
|
p = (0, [[(obj, 0)] * 3] * 2)
|
yield pytest.param(dt, p, 6, obj, id="<structured subarray 1>")
|
|
dt = np.dtype([('a', 'i4'),
|
('b', [('ba', 'O'), ('bb', 'O')], (2, 3))])
|
p = (0, [[(obj, obj)] * 3] * 2)
|
yield pytest.param(dt, p, 12, obj, id="<structured subarray 2>")
|
|
|
@pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts")
|
class TestStructuredObjectRefcounting:
|
"""These tests cover various uses of complicated structured types which
|
include objects and thus require reference counting.
|
"""
|
@pytest.mark.parametrize(['dt', 'pat', 'count', 'singleton'],
|
iter_struct_object_dtypes())
|
@pytest.mark.parametrize(["creation_func", "creation_obj"], [
|
pytest.param(np.empty, None,
|
# None is probably used for too many things
|
marks=pytest.mark.skip("unreliable due to python's behaviour")),
|
(np.ones, 1),
|
(np.zeros, 0)])
|
def test_structured_object_create_delete(self, dt, pat, count, singleton,
|
creation_func, creation_obj):
|
"""Structured object reference counting in creation and deletion"""
|
# The test assumes that 0, 1, and None are singletons.
|
gc.collect()
|
before = sys.getrefcount(creation_obj)
|
arr = creation_func(3, dt)
|
|
now = sys.getrefcount(creation_obj)
|
assert now - before == count * 3
|
del arr
|
now = sys.getrefcount(creation_obj)
|
assert now == before
|
|
@pytest.mark.parametrize(['dt', 'pat', 'count', 'singleton'],
|
iter_struct_object_dtypes())
|
def test_structured_object_item_setting(self, dt, pat, count, singleton):
|
"""Structured object reference counting for simple item setting"""
|
one = 1
|
|
gc.collect()
|
before = sys.getrefcount(singleton)
|
arr = np.array([pat] * 3, dt)
|
assert sys.getrefcount(singleton) - before == count * 3
|
# Fill with `1` and check that it was replaced correctly:
|
before2 = sys.getrefcount(one)
|
arr[...] = one
|
after2 = sys.getrefcount(one)
|
assert after2 - before2 == count * 3
|
del arr
|
gc.collect()
|
assert sys.getrefcount(one) == before2
|
assert sys.getrefcount(singleton) == before
|
|
@pytest.mark.parametrize(['dt', 'pat', 'count', 'singleton'],
|
iter_struct_object_dtypes())
|
@pytest.mark.parametrize(
|
['shape', 'index', 'items_changed'],
|
[((3,), ([0, 2],), 2),
|
((3, 2), ([0, 2], slice(None)), 4),
|
((3, 2), ([0, 2], [1]), 2),
|
((3,), ([True, False, True]), 2)])
|
def test_structured_object_indexing(self, shape, index, items_changed,
|
dt, pat, count, singleton):
|
"""Structured object reference counting for advanced indexing."""
|
# Use two small negative values (should be singletons, but less likely
|
# to run into race-conditions). This failed in some threaded envs
|
# When using 0 and 1. If it fails again, should remove all explicit
|
# checks, and rely on `pytest-leaks` reference count checker only.
|
val0 = -4
|
val1 = -5
|
|
arr = np.full(shape, val0, dt)
|
|
gc.collect()
|
before_val0 = sys.getrefcount(val0)
|
before_val1 = sys.getrefcount(val1)
|
# Test item getting:
|
part = arr[index]
|
after_val0 = sys.getrefcount(val0)
|
assert after_val0 - before_val0 == count * items_changed
|
del part
|
# Test item setting:
|
arr[index] = val1
|
gc.collect()
|
after_val0 = sys.getrefcount(val0)
|
after_val1 = sys.getrefcount(val1)
|
assert before_val0 - after_val0 == count * items_changed
|
assert after_val1 - before_val1 == count * items_changed
|
|
@pytest.mark.parametrize(['dt', 'pat', 'count', 'singleton'],
|
iter_struct_object_dtypes())
|
def test_structured_object_take_and_repeat(self, dt, pat, count, singleton):
|
"""Structured object reference counting for specialized functions.
|
The older functions such as take and repeat use different code paths
|
then item setting (when writing this).
|
"""
|
indices = [0, 1]
|
|
arr = np.array([pat] * 3, dt)
|
gc.collect()
|
before = sys.getrefcount(singleton)
|
res = arr.take(indices)
|
after = sys.getrefcount(singleton)
|
assert after - before == count * 2
|
new = res.repeat(10)
|
gc.collect()
|
after_repeat = sys.getrefcount(singleton)
|
assert after_repeat - after == count * 2 * 10
|
|
|
class TestStructuredDtypeSparseFields:
|
"""Tests subarray fields which contain sparse dtypes so that
|
not all memory is used by the dtype work. Such dtype's should
|
leave the underlying memory unchanged.
|
"""
|
dtype = np.dtype([('a', {'names':['aa', 'ab'], 'formats':['f', 'f'],
|
'offsets':[0, 4]}, (2, 3))])
|
sparse_dtype = np.dtype([('a', {'names':['ab'], 'formats':['f'],
|
'offsets':[4]}, (2, 3))])
|
|
def test_sparse_field_assignment(self):
|
arr = np.zeros(3, self.dtype)
|
sparse_arr = arr.view(self.sparse_dtype)
|
|
sparse_arr[...] = np.finfo(np.float32).max
|
# dtype is reduced when accessing the field, so shape is (3, 2, 3):
|
assert_array_equal(arr["a"]["aa"], np.zeros((3, 2, 3)))
|
|
def test_sparse_field_assignment_fancy(self):
|
# Fancy assignment goes to the copyswap function for complex types:
|
arr = np.zeros(3, self.dtype)
|
sparse_arr = arr.view(self.sparse_dtype)
|
|
sparse_arr[[0, 1, 2]] = np.finfo(np.float32).max
|
# dtype is reduced when accessing the field, so shape is (3, 2, 3):
|
assert_array_equal(arr["a"]["aa"], np.zeros((3, 2, 3)))
|
|
|
class TestMonsterType:
|
"""Test deeply nested subtypes."""
|
|
def test1(self):
|
simple1 = np.dtype({'names': ['r', 'b'], 'formats': ['u1', 'u1'],
|
'titles': ['Red pixel', 'Blue pixel']})
|
a = np.dtype([('yo', int), ('ye', simple1),
|
('yi', np.dtype((int, (3, 2))))])
|
b = np.dtype([('yo', int), ('ye', simple1),
|
('yi', np.dtype((int, (3, 2))))])
|
assert_dtype_equal(a, b)
|
|
c = np.dtype([('yo', int), ('ye', simple1),
|
('yi', np.dtype((a, (3, 2))))])
|
d = np.dtype([('yo', int), ('ye', simple1),
|
('yi', np.dtype((a, (3, 2))))])
|
assert_dtype_equal(c, d)
|
|
@pytest.mark.skipif(IS_PYSTON, reason="Pyston disables recursion checking")
|
def test_list_recursion(self):
|
l = list()
|
l.append(('f', l))
|
with pytest.raises(RecursionError):
|
np.dtype(l)
|
|
@pytest.mark.skipif(IS_PYSTON, reason="Pyston disables recursion checking")
|
def test_tuple_recursion(self):
|
d = np.int32
|
for i in range(100000):
|
d = (d, (1,))
|
with pytest.raises(RecursionError):
|
np.dtype(d)
|
|
@pytest.mark.skipif(IS_PYSTON, reason="Pyston disables recursion checking")
|
def test_dict_recursion(self):
|
d = dict(names=['self'], formats=[None], offsets=[0])
|
d['formats'][0] = d
|
with pytest.raises(RecursionError):
|
np.dtype(d)
|
|
|
class TestMetadata:
|
def test_no_metadata(self):
|
d = np.dtype(int)
|
assert_(d.metadata is None)
|
|
def test_metadata_takes_dict(self):
|
d = np.dtype(int, metadata={'datum': 1})
|
assert_(d.metadata == {'datum': 1})
|
|
def test_metadata_rejects_nondict(self):
|
assert_raises(TypeError, np.dtype, int, metadata='datum')
|
assert_raises(TypeError, np.dtype, int, metadata=1)
|
assert_raises(TypeError, np.dtype, int, metadata=None)
|
|
def test_nested_metadata(self):
|
d = np.dtype([('a', np.dtype(int, metadata={'datum': 1}))])
|
assert_(d['a'].metadata == {'datum': 1})
|
|
def test_base_metadata_copied(self):
|
d = np.dtype((np.void, np.dtype('i4,i4', metadata={'datum': 1})))
|
assert_(d.metadata == {'datum': 1})
|
|
class TestString:
|
def test_complex_dtype_str(self):
|
dt = np.dtype([('top', [('tiles', ('>f4', (64, 64)), (1,)),
|
('rtile', '>f4', (64, 36))], (3,)),
|
('bottom', [('bleft', ('>f4', (8, 64)), (1,)),
|
('bright', '>f4', (8, 36))])])
|
assert_equal(str(dt),
|
"[('top', [('tiles', ('>f4', (64, 64)), (1,)), "
|
"('rtile', '>f4', (64, 36))], (3,)), "
|
"('bottom', [('bleft', ('>f4', (8, 64)), (1,)), "
|
"('bright', '>f4', (8, 36))])]")
|
|
# If the sticky aligned flag is set to True, it makes the
|
# str() function use a dict representation with an 'aligned' flag
|
dt = np.dtype([('top', [('tiles', ('>f4', (64, 64)), (1,)),
|
('rtile', '>f4', (64, 36))],
|
(3,)),
|
('bottom', [('bleft', ('>f4', (8, 64)), (1,)),
|
('bright', '>f4', (8, 36))])],
|
align=True)
|
assert_equal(str(dt),
|
"{'names': ['top', 'bottom'],"
|
" 'formats': [([('tiles', ('>f4', (64, 64)), (1,)), "
|
"('rtile', '>f4', (64, 36))], (3,)), "
|
"[('bleft', ('>f4', (8, 64)), (1,)), "
|
"('bright', '>f4', (8, 36))]],"
|
" 'offsets': [0, 76800],"
|
" 'itemsize': 80000,"
|
" 'aligned': True}")
|
with np.printoptions(legacy='1.21'):
|
assert_equal(str(dt),
|
"{'names':['top','bottom'], "
|
"'formats':[([('tiles', ('>f4', (64, 64)), (1,)), "
|
"('rtile', '>f4', (64, 36))], (3,)),"
|
"[('bleft', ('>f4', (8, 64)), (1,)), "
|
"('bright', '>f4', (8, 36))]], "
|
"'offsets':[0,76800], "
|
"'itemsize':80000, "
|
"'aligned':True}")
|
assert_equal(np.dtype(eval(str(dt))), dt)
|
|
dt = np.dtype({'names': ['r', 'g', 'b'], 'formats': ['u1', 'u1', 'u1'],
|
'offsets': [0, 1, 2],
|
'titles': ['Red pixel', 'Green pixel', 'Blue pixel']})
|
assert_equal(str(dt),
|
"[(('Red pixel', 'r'), 'u1'), "
|
"(('Green pixel', 'g'), 'u1'), "
|
"(('Blue pixel', 'b'), 'u1')]")
|
|
dt = np.dtype({'names': ['rgba', 'r', 'g', 'b'],
|
'formats': ['<u4', 'u1', 'u1', 'u1'],
|
'offsets': [0, 0, 1, 2],
|
'titles': ['Color', 'Red pixel',
|
'Green pixel', 'Blue pixel']})
|
assert_equal(str(dt),
|
"{'names': ['rgba', 'r', 'g', 'b'],"
|
" 'formats': ['<u4', 'u1', 'u1', 'u1'],"
|
" 'offsets': [0, 0, 1, 2],"
|
" 'titles': ['Color', 'Red pixel', "
|
"'Green pixel', 'Blue pixel'],"
|
" 'itemsize': 4}")
|
|
dt = np.dtype({'names': ['r', 'b'], 'formats': ['u1', 'u1'],
|
'offsets': [0, 2],
|
'titles': ['Red pixel', 'Blue pixel']})
|
assert_equal(str(dt),
|
"{'names': ['r', 'b'],"
|
" 'formats': ['u1', 'u1'],"
|
" 'offsets': [0, 2],"
|
" 'titles': ['Red pixel', 'Blue pixel'],"
|
" 'itemsize': 3}")
|
|
dt = np.dtype([('a', '<m8[D]'), ('b', '<M8[us]')])
|
assert_equal(str(dt),
|
"[('a', '<m8[D]'), ('b', '<M8[us]')]")
|
|
def test_repr_structured(self):
|
dt = np.dtype([('top', [('tiles', ('>f4', (64, 64)), (1,)),
|
('rtile', '>f4', (64, 36))], (3,)),
|
('bottom', [('bleft', ('>f4', (8, 64)), (1,)),
|
('bright', '>f4', (8, 36))])])
|
assert_equal(repr(dt),
|
"dtype([('top', [('tiles', ('>f4', (64, 64)), (1,)), "
|
"('rtile', '>f4', (64, 36))], (3,)), "
|
"('bottom', [('bleft', ('>f4', (8, 64)), (1,)), "
|
"('bright', '>f4', (8, 36))])])")
|
|
dt = np.dtype({'names': ['r', 'g', 'b'], 'formats': ['u1', 'u1', 'u1'],
|
'offsets': [0, 1, 2],
|
'titles': ['Red pixel', 'Green pixel', 'Blue pixel']},
|
align=True)
|
assert_equal(repr(dt),
|
"dtype([(('Red pixel', 'r'), 'u1'), "
|
"(('Green pixel', 'g'), 'u1'), "
|
"(('Blue pixel', 'b'), 'u1')], align=True)")
|
|
def test_repr_structured_not_packed(self):
|
dt = np.dtype({'names': ['rgba', 'r', 'g', 'b'],
|
'formats': ['<u4', 'u1', 'u1', 'u1'],
|
'offsets': [0, 0, 1, 2],
|
'titles': ['Color', 'Red pixel',
|
'Green pixel', 'Blue pixel']}, align=True)
|
assert_equal(repr(dt),
|
"dtype({'names': ['rgba', 'r', 'g', 'b'],"
|
" 'formats': ['<u4', 'u1', 'u1', 'u1'],"
|
" 'offsets': [0, 0, 1, 2],"
|
" 'titles': ['Color', 'Red pixel', "
|
"'Green pixel', 'Blue pixel'],"
|
" 'itemsize': 4}, align=True)")
|
|
dt = np.dtype({'names': ['r', 'b'], 'formats': ['u1', 'u1'],
|
'offsets': [0, 2],
|
'titles': ['Red pixel', 'Blue pixel'],
|
'itemsize': 4})
|
assert_equal(repr(dt),
|
"dtype({'names': ['r', 'b'], "
|
"'formats': ['u1', 'u1'], "
|
"'offsets': [0, 2], "
|
"'titles': ['Red pixel', 'Blue pixel'], "
|
"'itemsize': 4})")
|
|
def test_repr_structured_datetime(self):
|
dt = np.dtype([('a', '<M8[D]'), ('b', '<m8[us]')])
|
assert_equal(repr(dt),
|
"dtype([('a', '<M8[D]'), ('b', '<m8[us]')])")
|
|
def test_repr_str_subarray(self):
|
dt = np.dtype(('<i2', (1,)))
|
assert_equal(repr(dt), "dtype(('<i2', (1,)))")
|
assert_equal(str(dt), "('<i2', (1,))")
|
|
def test_base_dtype_with_object_type(self):
|
# Issue gh-2798, should not error.
|
np.array(['a'], dtype="O").astype(("O", [("name", "O")]))
|
|
def test_empty_string_to_object(self):
|
# Pull request #4722
|
np.array(["", ""]).astype(object)
|
|
def test_void_subclass_unsized(self):
|
dt = np.dtype(np.record)
|
assert_equal(repr(dt), "dtype('V')")
|
assert_equal(str(dt), '|V0')
|
assert_equal(dt.name, 'record')
|
|
def test_void_subclass_sized(self):
|
dt = np.dtype((np.record, 2))
|
assert_equal(repr(dt), "dtype('V2')")
|
assert_equal(str(dt), '|V2')
|
assert_equal(dt.name, 'record16')
|
|
def test_void_subclass_fields(self):
|
dt = np.dtype((np.record, [('a', '<u2')]))
|
assert_equal(repr(dt), "dtype((numpy.record, [('a', '<u2')]))")
|
assert_equal(str(dt), "(numpy.record, [('a', '<u2')])")
|
assert_equal(dt.name, 'record16')
|
|
|
class TestDtypeAttributeDeletion:
|
|
def test_dtype_non_writable_attributes_deletion(self):
|
dt = np.dtype(np.double)
|
attr = ["subdtype", "descr", "str", "name", "base", "shape",
|
"isbuiltin", "isnative", "isalignedstruct", "fields",
|
"metadata", "hasobject"]
|
|
for s in attr:
|
assert_raises(AttributeError, delattr, dt, s)
|
|
def test_dtype_writable_attributes_deletion(self):
|
dt = np.dtype(np.double)
|
attr = ["names"]
|
for s in attr:
|
assert_raises(AttributeError, delattr, dt, s)
|
|
|
class TestDtypeAttributes:
|
def test_descr_has_trailing_void(self):
|
# see gh-6359
|
dtype = np.dtype({
|
'names': ['A', 'B'],
|
'formats': ['f4', 'f4'],
|
'offsets': [0, 8],
|
'itemsize': 16})
|
new_dtype = np.dtype(dtype.descr)
|
assert_equal(new_dtype.itemsize, 16)
|
|
def test_name_dtype_subclass(self):
|
# Ticket #4357
|
class user_def_subcls(np.void):
|
pass
|
assert_equal(np.dtype(user_def_subcls).name, 'user_def_subcls')
|
|
def test_zero_stride(self):
|
arr = np.ones(1, dtype="i8")
|
arr = np.broadcast_to(arr, 10)
|
assert arr.strides == (0,)
|
with pytest.raises(ValueError):
|
arr.dtype = "i1"
|
|
class TestDTypeMakeCanonical:
|
def check_canonical(self, dtype, canonical):
|
"""
|
Check most properties relevant to "canonical" versions of a dtype,
|
which is mainly native byte order for datatypes supporting this.
|
|
The main work is checking structured dtypes with fields, where we
|
reproduce most the actual logic used in the C-code.
|
"""
|
assert type(dtype) is type(canonical)
|
|
# a canonical DType should always have equivalent casting (both ways)
|
assert np.can_cast(dtype, canonical, casting="equiv")
|
assert np.can_cast(canonical, dtype, casting="equiv")
|
# a canonical dtype (and its fields) is always native (checks fields):
|
assert canonical.isnative
|
|
# Check that canonical of canonical is the same (no casting):
|
assert np.result_type(canonical) == canonical
|
|
if not dtype.names:
|
# The flags currently never change for unstructured dtypes
|
assert dtype.flags == canonical.flags
|
return
|
|
# Must have all the needs API flag set:
|
assert dtype.flags & 0b10000
|
|
# Check that the fields are identical (including titles):
|
assert dtype.fields.keys() == canonical.fields.keys()
|
|
def aligned_offset(offset, alignment):
|
# round up offset:
|
return - (-offset // alignment) * alignment
|
|
totalsize = 0
|
max_alignment = 1
|
for name in dtype.names:
|
# each field is also canonical:
|
new_field_descr = canonical.fields[name][0]
|
self.check_canonical(dtype.fields[name][0], new_field_descr)
|
|
# Must have the "inherited" object related flags:
|
expected = 0b11011 & new_field_descr.flags
|
assert (canonical.flags & expected) == expected
|
|
if canonical.isalignedstruct:
|
totalsize = aligned_offset(totalsize, new_field_descr.alignment)
|
max_alignment = max(new_field_descr.alignment, max_alignment)
|
|
assert canonical.fields[name][1] == totalsize
|
# if a title exists, they must match (otherwise empty tuple):
|
assert dtype.fields[name][2:] == canonical.fields[name][2:]
|
|
totalsize += new_field_descr.itemsize
|
|
if canonical.isalignedstruct:
|
totalsize = aligned_offset(totalsize, max_alignment)
|
assert canonical.itemsize == totalsize
|
assert canonical.alignment == max_alignment
|
|
def test_simple(self):
|
dt = np.dtype(">i4")
|
assert np.result_type(dt).isnative
|
assert np.result_type(dt).num == dt.num
|
|
# dtype with empty space:
|
struct_dt = np.dtype(">i4,<i1,i8,V3")[["f0", "f2"]]
|
canonical = np.result_type(struct_dt)
|
assert canonical.itemsize == 4+8
|
assert canonical.isnative
|
|
# aligned struct dtype with empty space:
|
struct_dt = np.dtype(">i1,<i4,i8,V3", align=True)[["f0", "f2"]]
|
canonical = np.result_type(struct_dt)
|
assert canonical.isalignedstruct
|
assert canonical.itemsize == np.dtype("i8").alignment + 8
|
assert canonical.isnative
|
|
def test_object_flag_not_inherited(self):
|
# The following dtype still indicates "object", because its included
|
# in the unaccessible space (maybe this could change at some point):
|
arr = np.ones(3, "i,O,i")[["f0", "f2"]]
|
assert arr.dtype.hasobject
|
canonical_dt = np.result_type(arr.dtype)
|
assert not canonical_dt.hasobject
|
|
@pytest.mark.slow
|
@hypothesis.given(dtype=hynp.nested_dtypes())
|
def test_make_canonical_hypothesis(self, dtype):
|
canonical = np.result_type(dtype)
|
self.check_canonical(dtype, canonical)
|
# result_type with two arguments should always give identical results:
|
two_arg_result = np.result_type(dtype, dtype)
|
assert np.can_cast(two_arg_result, canonical, casting="no")
|
|
@pytest.mark.slow
|
@hypothesis.given(
|
dtype=hypothesis.extra.numpy.array_dtypes(
|
subtype_strategy=hypothesis.extra.numpy.array_dtypes(),
|
min_size=5, max_size=10, allow_subarrays=True))
|
def test_structured(self, dtype):
|
# Pick 4 of the fields at random. This will leave empty space in the
|
# dtype (since we do not canonicalize it here).
|
field_subset = random.sample(dtype.names, k=4)
|
dtype_with_empty_space = dtype[field_subset]
|
assert dtype_with_empty_space.itemsize == dtype.itemsize
|
canonicalized = np.result_type(dtype_with_empty_space)
|
self.check_canonical(dtype_with_empty_space, canonicalized)
|
# promotion with two arguments should always give identical results:
|
two_arg_result = np.promote_types(
|
dtype_with_empty_space, dtype_with_empty_space)
|
assert np.can_cast(two_arg_result, canonicalized, casting="no")
|
|
# Ensure that we also check aligned struct (check the opposite, in
|
# case hypothesis grows support for `align`. Then repeat the test:
|
dtype_aligned = np.dtype(dtype.descr, align=not dtype.isalignedstruct)
|
dtype_with_empty_space = dtype_aligned[field_subset]
|
assert dtype_with_empty_space.itemsize == dtype_aligned.itemsize
|
canonicalized = np.result_type(dtype_with_empty_space)
|
self.check_canonical(dtype_with_empty_space, canonicalized)
|
# promotion with two arguments should always give identical results:
|
two_arg_result = np.promote_types(
|
dtype_with_empty_space, dtype_with_empty_space)
|
assert np.can_cast(two_arg_result, canonicalized, casting="no")
|
|
|
class TestPickling:
|
|
def check_pickling(self, dtype):
|
for proto in range(pickle.HIGHEST_PROTOCOL + 1):
|
buf = pickle.dumps(dtype, proto)
|
# The dtype pickling itself pickles `np.dtype` if it is pickled
|
# as a singleton `dtype` should be stored in the buffer:
|
assert b"_DType_reconstruct" not in buf
|
assert b"dtype" in buf
|
pickled = pickle.loads(buf)
|
assert_equal(pickled, dtype)
|
assert_equal(pickled.descr, dtype.descr)
|
if dtype.metadata is not None:
|
assert_equal(pickled.metadata, dtype.metadata)
|
# Check the reconstructed dtype is functional
|
x = np.zeros(3, dtype=dtype)
|
y = np.zeros(3, dtype=pickled)
|
assert_equal(x, y)
|
assert_equal(x[0], y[0])
|
|
@pytest.mark.parametrize('t', [int, float, complex, np.int32, str, object,
|
np.compat.unicode, bool])
|
def test_builtin(self, t):
|
self.check_pickling(np.dtype(t))
|
|
def test_structured(self):
|
dt = np.dtype(([('a', '>f4', (2, 1)), ('b', '<f8', (1, 3))], (2, 2)))
|
self.check_pickling(dt)
|
|
def test_structured_aligned(self):
|
dt = np.dtype('i4, i1', align=True)
|
self.check_pickling(dt)
|
|
def test_structured_unaligned(self):
|
dt = np.dtype('i4, i1', align=False)
|
self.check_pickling(dt)
|
|
def test_structured_padded(self):
|
dt = np.dtype({
|
'names': ['A', 'B'],
|
'formats': ['f4', 'f4'],
|
'offsets': [0, 8],
|
'itemsize': 16})
|
self.check_pickling(dt)
|
|
def test_structured_titles(self):
|
dt = np.dtype({'names': ['r', 'b'],
|
'formats': ['u1', 'u1'],
|
'titles': ['Red pixel', 'Blue pixel']})
|
self.check_pickling(dt)
|
|
@pytest.mark.parametrize('base', ['m8', 'M8'])
|
@pytest.mark.parametrize('unit', ['', 'Y', 'M', 'W', 'D', 'h', 'm', 's',
|
'ms', 'us', 'ns', 'ps', 'fs', 'as'])
|
def test_datetime(self, base, unit):
|
dt = np.dtype('%s[%s]' % (base, unit) if unit else base)
|
self.check_pickling(dt)
|
if unit:
|
dt = np.dtype('%s[7%s]' % (base, unit))
|
self.check_pickling(dt)
|
|
def test_metadata(self):
|
dt = np.dtype(int, metadata={'datum': 1})
|
self.check_pickling(dt)
|
|
@pytest.mark.parametrize("DType",
|
[type(np.dtype(t)) for t in np.typecodes['All']] +
|
[np.dtype(rational), np.dtype])
|
def test_pickle_types(self, DType):
|
# Check that DTypes (the classes/types) roundtrip when pickling
|
for proto in range(pickle.HIGHEST_PROTOCOL + 1):
|
roundtrip_DType = pickle.loads(pickle.dumps(DType, proto))
|
assert roundtrip_DType is DType
|
|
|
class TestPromotion:
|
"""Test cases related to more complex DType promotions. Further promotion
|
tests are defined in `test_numeric.py`
|
"""
|
@np._no_nep50_warning()
|
@pytest.mark.parametrize(["other", "expected", "expected_weak"],
|
[(2**16-1, np.complex64, None),
|
(2**32-1, np.complex128, np.complex64),
|
(np.float16(2), np.complex64, None),
|
(np.float32(2), np.complex64, None),
|
(np.longdouble(2), np.complex64, np.clongdouble),
|
# Base of the double value to sidestep any rounding issues:
|
(np.longdouble(np.nextafter(1.7e308, 0.)),
|
np.complex128, np.clongdouble),
|
# Additionally use "nextafter" so the cast can't round down:
|
(np.longdouble(np.nextafter(1.7e308, np.inf)),
|
np.clongdouble, None),
|
# repeat for complex scalars:
|
(np.complex64(2), np.complex64, None),
|
(np.clongdouble(2), np.complex64, np.clongdouble),
|
# Base of the double value to sidestep any rounding issues:
|
(np.clongdouble(np.nextafter(1.7e308, 0.) * 1j),
|
np.complex128, np.clongdouble),
|
# Additionally use "nextafter" so the cast can't round down:
|
(np.clongdouble(np.nextafter(1.7e308, np.inf)),
|
np.clongdouble, None),
|
])
|
def test_complex_other_value_based(self,
|
weak_promotion, other, expected, expected_weak):
|
if weak_promotion and expected_weak is not None:
|
expected = expected_weak
|
|
# This would change if we modify the value based promotion
|
min_complex = np.dtype(np.complex64)
|
|
res = np.result_type(other, min_complex)
|
assert res == expected
|
# Check the same for a simple ufunc call that uses the same logic:
|
res = np.minimum(other, np.ones(3, dtype=min_complex)).dtype
|
assert res == expected
|
|
@pytest.mark.parametrize(["other", "expected"],
|
[(np.bool_, np.complex128),
|
(np.int64, np.complex128),
|
(np.float16, np.complex64),
|
(np.float32, np.complex64),
|
(np.float64, np.complex128),
|
(np.longdouble, np.clongdouble),
|
(np.complex64, np.complex64),
|
(np.complex128, np.complex128),
|
(np.clongdouble, np.clongdouble),
|
])
|
def test_complex_scalar_value_based(self, other, expected):
|
# This would change if we modify the value based promotion
|
complex_scalar = 1j
|
|
res = np.result_type(other, complex_scalar)
|
assert res == expected
|
# Check the same for a simple ufunc call that uses the same logic:
|
res = np.minimum(np.ones(3, dtype=other), complex_scalar).dtype
|
assert res == expected
|
|
def test_complex_pyscalar_promote_rational(self):
|
with pytest.raises(TypeError,
|
match=r".* no common DType exists for the given inputs"):
|
np.result_type(1j, rational)
|
|
with pytest.raises(TypeError,
|
match=r".* no common DType exists for the given inputs"):
|
np.result_type(1j, rational(1, 2))
|
|
@pytest.mark.parametrize("val", [2, 2**32, 2**63, 2**64, 2*100])
|
def test_python_integer_promotion(self, val):
|
# If we only path scalars (mainly python ones!), the result must take
|
# into account that the integer may be considered int32, int64, uint64,
|
# or object depending on the input value. So test those paths!
|
expected_dtype = np.result_type(np.array(val).dtype, np.array(0).dtype)
|
assert np.result_type(val, 0) == expected_dtype
|
# For completeness sake, also check with a NumPy scalar as second arg:
|
assert np.result_type(val, np.int8(0)) == expected_dtype
|
|
@pytest.mark.parametrize(["other", "expected"],
|
[(1, rational), (1., np.float64)])
|
@np._no_nep50_warning()
|
def test_float_int_pyscalar_promote_rational(
|
self, weak_promotion, other, expected):
|
# Note that rationals are a bit akward as they promote with float64
|
# or default ints, but not float16 or uint8/int8 (which looks
|
# inconsistent here). The new promotion fixes this (partially?)
|
if not weak_promotion and type(other) == float:
|
# The float version, checks float16 in the legacy path, which fails
|
# the integer version seems to check int8 (also), so it can
|
# pass.
|
with pytest.raises(TypeError,
|
match=r".* do not have a common DType"):
|
np.result_type(other, rational)
|
else:
|
assert np.result_type(other, rational) == expected
|
|
assert np.result_type(other, rational(1, 2)) == expected
|
|
@pytest.mark.parametrize(["dtypes", "expected"], [
|
# These promotions are not associative/commutative:
|
([np.uint16, np.int16, np.float16], np.float32),
|
([np.uint16, np.int8, np.float16], np.float32),
|
([np.uint8, np.int16, np.float16], np.float32),
|
# The following promotions are not ambiguous, but cover code
|
# paths of abstract promotion (no particular logic being tested)
|
([1, 1, np.float64], np.float64),
|
([1, 1., np.complex128], np.complex128),
|
([1, 1j, np.float64], np.complex128),
|
([1., 1., np.int64], np.float64),
|
([1., 1j, np.float64], np.complex128),
|
([1j, 1j, np.float64], np.complex128),
|
([1, True, np.bool_], np.int_),
|
])
|
def test_permutations_do_not_influence_result(self, dtypes, expected):
|
# Tests that most permutations do not influence the result. In the
|
# above some uint and int combintations promote to a larger integer
|
# type, which would then promote to a larger than necessary float.
|
for perm in permutations(dtypes):
|
assert np.result_type(*perm) == expected
|
|
|
def test_rational_dtype():
|
# test for bug gh-5719
|
a = np.array([1111], dtype=rational).astype
|
assert_raises(OverflowError, a, 'int8')
|
|
# test that dtype detection finds user-defined types
|
x = rational(1)
|
assert_equal(np.array([x,x]).dtype, np.dtype(rational))
|
|
|
def test_dtypes_are_true():
|
# test for gh-6294
|
assert bool(np.dtype('f8'))
|
assert bool(np.dtype('i8'))
|
assert bool(np.dtype([('a', 'i8'), ('b', 'f4')]))
|
|
|
def test_invalid_dtype_string():
|
# test for gh-10440
|
assert_raises(TypeError, np.dtype, 'f8,i8,[f8,i8]')
|
assert_raises(TypeError, np.dtype, 'Fl\xfcgel')
|
|
|
def test_keyword_argument():
|
# test for https://github.com/numpy/numpy/pull/16574#issuecomment-642660971
|
assert np.dtype(dtype=np.float64) == np.dtype(np.float64)
|
|
|
def test_ulong_dtype():
|
# test for gh-21063
|
assert np.dtype("ulong") == np.dtype(np.uint)
|
|
|
class TestFromDTypeAttribute:
|
def test_simple(self):
|
class dt:
|
dtype = np.dtype("f8")
|
|
assert np.dtype(dt) == np.float64
|
assert np.dtype(dt()) == np.float64
|
|
@pytest.mark.skipif(IS_PYSTON, reason="Pyston disables recursion checking")
|
def test_recursion(self):
|
class dt:
|
pass
|
|
dt.dtype = dt
|
with pytest.raises(RecursionError):
|
np.dtype(dt)
|
|
dt_instance = dt()
|
dt_instance.dtype = dt
|
with pytest.raises(RecursionError):
|
np.dtype(dt_instance)
|
|
def test_void_subtype(self):
|
class dt(np.void):
|
# This code path is fully untested before, so it is unclear
|
# what this should be useful for. Note that if np.void is used
|
# numpy will think we are deallocating a base type [1.17, 2019-02].
|
dtype = np.dtype("f,f")
|
|
np.dtype(dt)
|
np.dtype(dt(1))
|
|
@pytest.mark.skipif(IS_PYSTON, reason="Pyston disables recursion checking")
|
def test_void_subtype_recursion(self):
|
class vdt(np.void):
|
pass
|
|
vdt.dtype = vdt
|
|
with pytest.raises(RecursionError):
|
np.dtype(vdt)
|
|
with pytest.raises(RecursionError):
|
np.dtype(vdt(1))
|
|
|
class TestDTypeClasses:
|
@pytest.mark.parametrize("dtype", list(np.typecodes['All']) + [rational])
|
def test_basic_dtypes_subclass_properties(self, dtype):
|
# Note: Except for the isinstance and type checks, these attributes
|
# are considered currently private and may change.
|
dtype = np.dtype(dtype)
|
assert isinstance(dtype, np.dtype)
|
assert type(dtype) is not np.dtype
|
assert type(dtype).__name__ == f"dtype[{dtype.type.__name__}]"
|
assert type(dtype).__module__ == "numpy"
|
assert not type(dtype)._abstract
|
|
# the flexible dtypes and datetime/timedelta have additional parameters
|
# which are more than just storage information, these would need to be
|
# given when creating a dtype:
|
parametric = (np.void, np.str_, np.bytes_, np.datetime64, np.timedelta64)
|
if dtype.type not in parametric:
|
assert not type(dtype)._parametric
|
assert type(dtype)() is dtype
|
else:
|
assert type(dtype)._parametric
|
with assert_raises(TypeError):
|
type(dtype)()
|
|
def test_dtype_superclass(self):
|
assert type(np.dtype) is not type
|
assert isinstance(np.dtype, type)
|
|
assert type(np.dtype).__name__ == "_DTypeMeta"
|
assert type(np.dtype).__module__ == "numpy"
|
assert np.dtype._abstract
|
|
|
class TestFromCTypes:
|
|
@staticmethod
|
def check(ctype, dtype):
|
dtype = np.dtype(dtype)
|
assert_equal(np.dtype(ctype), dtype)
|
assert_equal(np.dtype(ctype()), dtype)
|
|
def test_array(self):
|
c8 = ctypes.c_uint8
|
self.check( 3 * c8, (np.uint8, (3,)))
|
self.check( 1 * c8, (np.uint8, (1,)))
|
self.check( 0 * c8, (np.uint8, (0,)))
|
self.check(1 * (3 * c8), ((np.uint8, (3,)), (1,)))
|
self.check(3 * (1 * c8), ((np.uint8, (1,)), (3,)))
|
|
def test_padded_structure(self):
|
class PaddedStruct(ctypes.Structure):
|
_fields_ = [
|
('a', ctypes.c_uint8),
|
('b', ctypes.c_uint16)
|
]
|
expected = np.dtype([
|
('a', np.uint8),
|
('b', np.uint16)
|
], align=True)
|
self.check(PaddedStruct, expected)
|
|
def test_bit_fields(self):
|
class BitfieldStruct(ctypes.Structure):
|
_fields_ = [
|
('a', ctypes.c_uint8, 7),
|
('b', ctypes.c_uint8, 1)
|
]
|
assert_raises(TypeError, np.dtype, BitfieldStruct)
|
assert_raises(TypeError, np.dtype, BitfieldStruct())
|
|
def test_pointer(self):
|
p_uint8 = ctypes.POINTER(ctypes.c_uint8)
|
assert_raises(TypeError, np.dtype, p_uint8)
|
|
def test_void_pointer(self):
|
self.check(ctypes.c_void_p, np.uintp)
|
|
def test_union(self):
|
class Union(ctypes.Union):
|
_fields_ = [
|
('a', ctypes.c_uint8),
|
('b', ctypes.c_uint16),
|
]
|
expected = np.dtype(dict(
|
names=['a', 'b'],
|
formats=[np.uint8, np.uint16],
|
offsets=[0, 0],
|
itemsize=2
|
))
|
self.check(Union, expected)
|
|
def test_union_with_struct_packed(self):
|
class Struct(ctypes.Structure):
|
_pack_ = 1
|
_fields_ = [
|
('one', ctypes.c_uint8),
|
('two', ctypes.c_uint32)
|
]
|
|
class Union(ctypes.Union):
|
_fields_ = [
|
('a', ctypes.c_uint8),
|
('b', ctypes.c_uint16),
|
('c', ctypes.c_uint32),
|
('d', Struct),
|
]
|
expected = np.dtype(dict(
|
names=['a', 'b', 'c', 'd'],
|
formats=['u1', np.uint16, np.uint32, [('one', 'u1'), ('two', np.uint32)]],
|
offsets=[0, 0, 0, 0],
|
itemsize=ctypes.sizeof(Union)
|
))
|
self.check(Union, expected)
|
|
def test_union_packed(self):
|
class Struct(ctypes.Structure):
|
_fields_ = [
|
('one', ctypes.c_uint8),
|
('two', ctypes.c_uint32)
|
]
|
_pack_ = 1
|
class Union(ctypes.Union):
|
_pack_ = 1
|
_fields_ = [
|
('a', ctypes.c_uint8),
|
('b', ctypes.c_uint16),
|
('c', ctypes.c_uint32),
|
('d', Struct),
|
]
|
expected = np.dtype(dict(
|
names=['a', 'b', 'c', 'd'],
|
formats=['u1', np.uint16, np.uint32, [('one', 'u1'), ('two', np.uint32)]],
|
offsets=[0, 0, 0, 0],
|
itemsize=ctypes.sizeof(Union)
|
))
|
self.check(Union, expected)
|
|
def test_packed_structure(self):
|
class PackedStructure(ctypes.Structure):
|
_pack_ = 1
|
_fields_ = [
|
('a', ctypes.c_uint8),
|
('b', ctypes.c_uint16)
|
]
|
expected = np.dtype([
|
('a', np.uint8),
|
('b', np.uint16)
|
])
|
self.check(PackedStructure, expected)
|
|
def test_large_packed_structure(self):
|
class PackedStructure(ctypes.Structure):
|
_pack_ = 2
|
_fields_ = [
|
('a', ctypes.c_uint8),
|
('b', ctypes.c_uint16),
|
('c', ctypes.c_uint8),
|
('d', ctypes.c_uint16),
|
('e', ctypes.c_uint32),
|
('f', ctypes.c_uint32),
|
('g', ctypes.c_uint8)
|
]
|
expected = np.dtype(dict(
|
formats=[np.uint8, np.uint16, np.uint8, np.uint16, np.uint32, np.uint32, np.uint8 ],
|
offsets=[0, 2, 4, 6, 8, 12, 16],
|
names=['a', 'b', 'c', 'd', 'e', 'f', 'g'],
|
itemsize=18))
|
self.check(PackedStructure, expected)
|
|
def test_big_endian_structure_packed(self):
|
class BigEndStruct(ctypes.BigEndianStructure):
|
_fields_ = [
|
('one', ctypes.c_uint8),
|
('two', ctypes.c_uint32)
|
]
|
_pack_ = 1
|
expected = np.dtype([('one', 'u1'), ('two', '>u4')])
|
self.check(BigEndStruct, expected)
|
|
def test_little_endian_structure_packed(self):
|
class LittleEndStruct(ctypes.LittleEndianStructure):
|
_fields_ = [
|
('one', ctypes.c_uint8),
|
('two', ctypes.c_uint32)
|
]
|
_pack_ = 1
|
expected = np.dtype([('one', 'u1'), ('two', '<u4')])
|
self.check(LittleEndStruct, expected)
|
|
def test_little_endian_structure(self):
|
class PaddedStruct(ctypes.LittleEndianStructure):
|
_fields_ = [
|
('a', ctypes.c_uint8),
|
('b', ctypes.c_uint16)
|
]
|
expected = np.dtype([
|
('a', '<B'),
|
('b', '<H')
|
], align=True)
|
self.check(PaddedStruct, expected)
|
|
def test_big_endian_structure(self):
|
class PaddedStruct(ctypes.BigEndianStructure):
|
_fields_ = [
|
('a', ctypes.c_uint8),
|
('b', ctypes.c_uint16)
|
]
|
expected = np.dtype([
|
('a', '>B'),
|
('b', '>H')
|
], align=True)
|
self.check(PaddedStruct, expected)
|
|
def test_simple_endian_types(self):
|
self.check(ctypes.c_uint16.__ctype_le__, np.dtype('<u2'))
|
self.check(ctypes.c_uint16.__ctype_be__, np.dtype('>u2'))
|
self.check(ctypes.c_uint8.__ctype_le__, np.dtype('u1'))
|
self.check(ctypes.c_uint8.__ctype_be__, np.dtype('u1'))
|
|
all_types = set(np.typecodes['All'])
|
all_pairs = permutations(all_types, 2)
|
|
@pytest.mark.parametrize("pair", all_pairs)
|
def test_pairs(self, pair):
|
"""
|
Check that np.dtype('x,y') matches [np.dtype('x'), np.dtype('y')]
|
Example: np.dtype('d,I') -> dtype([('f0', '<f8'), ('f1', '<u4')])
|
"""
|
# gh-5645: check that np.dtype('i,L') can be used
|
pair_type = np.dtype('{},{}'.format(*pair))
|
expected = np.dtype([('f0', pair[0]), ('f1', pair[1])])
|
assert_equal(pair_type, expected)
|
|
|
class TestUserDType:
|
@pytest.mark.leaks_references(reason="dynamically creates custom dtype.")
|
def test_custom_structured_dtype(self):
|
class mytype:
|
pass
|
|
blueprint = np.dtype([("field", object)])
|
dt = create_custom_field_dtype(blueprint, mytype, 0)
|
assert dt.type == mytype
|
# We cannot (currently) *create* this dtype with `np.dtype` because
|
# mytype does not inherit from `np.generic`. This seems like an
|
# unnecessary restriction, but one that has been around forever:
|
assert np.dtype(mytype) == np.dtype("O")
|
|
def test_custom_structured_dtype_errors(self):
|
class mytype:
|
pass
|
|
blueprint = np.dtype([("field", object)])
|
|
with pytest.raises(ValueError):
|
# Tests what happens if fields are unset during creation
|
# which is currently rejected due to the containing object
|
# (see PyArray_RegisterDataType).
|
create_custom_field_dtype(blueprint, mytype, 1)
|
|
with pytest.raises(RuntimeError):
|
# Tests that a dtype must have its type field set up to np.dtype
|
# or in this case a builtin instance.
|
create_custom_field_dtype(blueprint, mytype, 2)
|
|
|
@pytest.mark.skipif(sys.version_info < (3, 9), reason="Requires python 3.9")
|
class TestClassGetItem:
|
def test_dtype(self) -> None:
|
alias = np.dtype[Any]
|
assert isinstance(alias, types.GenericAlias)
|
assert alias.__origin__ is np.dtype
|
|
@pytest.mark.parametrize("code", np.typecodes["All"])
|
def test_dtype_subclass(self, code: str) -> None:
|
cls = type(np.dtype(code))
|
alias = cls[Any]
|
assert isinstance(alias, types.GenericAlias)
|
assert alias.__origin__ is cls
|
|
@pytest.mark.parametrize("arg_len", range(4))
|
def test_subscript_tuple(self, arg_len: int) -> None:
|
arg_tup = (Any,) * arg_len
|
if arg_len == 1:
|
assert np.dtype[arg_tup]
|
else:
|
with pytest.raises(TypeError):
|
np.dtype[arg_tup]
|
|
def test_subscript_scalar(self) -> None:
|
assert np.dtype[Any]
|
|
|
def test_result_type_integers_and_unitless_timedelta64():
|
# Regression test for gh-20077. The following call of `result_type`
|
# would cause a seg. fault.
|
td = np.timedelta64(4)
|
result = np.result_type(0, td)
|
assert_dtype_equal(result, td.dtype)
|
|
|
@pytest.mark.skipif(sys.version_info >= (3, 9), reason="Requires python 3.8")
|
def test_class_getitem_38() -> None:
|
match = "Type subscription requires python >= 3.9"
|
with pytest.raises(TypeError, match=match):
|
np.dtype[Any]
|