1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import pytest
from pytest import param
from numpy.testing import IS_WASM
import numpy as np
 
 
def values_and_dtypes():
    """
    Generate value+dtype pairs that generate floating point errors during
    casts.  The invalid casts to integers will generate "invalid" value
    warnings, the float casts all generate "overflow".
 
    (The Python int/float paths don't need to get tested in all the same
    situations, but it does not hurt.)
    """
    # Casting to float16:
    yield param(70000, "float16", id="int-to-f2")
    yield param("70000", "float16", id="str-to-f2")
    yield param(70000.0, "float16", id="float-to-f2")
    yield param(np.longdouble(70000.), "float16", id="longdouble-to-f2")
    yield param(np.float64(70000.), "float16", id="double-to-f2")
    yield param(np.float32(70000.), "float16", id="float-to-f2")
    # Casting to float32:
    yield param(10**100, "float32", id="int-to-f4")
    yield param(1e100, "float32", id="float-to-f2")
    yield param(np.longdouble(1e300), "float32", id="longdouble-to-f2")
    yield param(np.float64(1e300), "float32", id="double-to-f2")
    # Casting to float64:
    # If longdouble is double-double, its max can be rounded down to the double
    # max.  So we correct the double spacing (a bit weird, admittedly):
    max_ld = np.finfo(np.longdouble).max
    spacing = np.spacing(np.nextafter(np.finfo("f8").max, 0))
    if max_ld - spacing > np.finfo("f8").max:
        yield param(np.finfo(np.longdouble).max, "float64",
                    id="longdouble-to-f8")
 
    # Cast to complex32:
    yield param(2e300, "complex64", id="float-to-c8")
    yield param(2e300+0j, "complex64", id="complex-to-c8")
    yield param(2e300j, "complex64", id="complex-to-c8")
    yield param(np.longdouble(2e300), "complex64", id="longdouble-to-c8")
 
    # Invalid float to integer casts:
    with np.errstate(over="ignore"):
        for to_dt in np.typecodes["AllInteger"]:
            for value in [np.inf, np.nan]:
                for from_dt in np.typecodes["AllFloat"]:
                    from_dt = np.dtype(from_dt)
                    from_val = from_dt.type(value)
 
                    yield param(from_val, to_dt, id=f"{from_val}-to-{to_dt}")
 
 
def check_operations(dtype, value):
    """
    There are many dedicated paths in NumPy which cast and should check for
    floating point errors which occurred during those casts.
    """
    if dtype.kind != 'i':
        # These assignments use the stricter setitem logic:
        def assignment():
            arr = np.empty(3, dtype=dtype)
            arr[0] = value
 
        yield assignment
 
        def fill():
            arr = np.empty(3, dtype=dtype)
            arr.fill(value)
 
        yield fill
 
    def copyto_scalar():
        arr = np.empty(3, dtype=dtype)
        np.copyto(arr, value, casting="unsafe")
 
    yield copyto_scalar
 
    def copyto():
        arr = np.empty(3, dtype=dtype)
        np.copyto(arr, np.array([value, value, value]), casting="unsafe")
 
    yield copyto
 
    def copyto_scalar_masked():
        arr = np.empty(3, dtype=dtype)
        np.copyto(arr, value, casting="unsafe",
                  where=[True, False, True])
 
    yield copyto_scalar_masked
 
    def copyto_masked():
        arr = np.empty(3, dtype=dtype)
        np.copyto(arr, np.array([value, value, value]), casting="unsafe",
                  where=[True, False, True])
 
    yield copyto_masked
 
    def direct_cast():
        np.array([value, value, value]).astype(dtype)
 
    yield direct_cast
 
    def direct_cast_nd_strided():
        arr = np.full((5, 5, 5), fill_value=value)[:, ::2, :]
        arr.astype(dtype)
 
    yield direct_cast_nd_strided
 
    def boolean_array_assignment():
        arr = np.empty(3, dtype=dtype)
        arr[[True, False, True]] = np.array([value, value])
 
    yield boolean_array_assignment
 
    def integer_array_assignment():
        arr = np.empty(3, dtype=dtype)
        values = np.array([value, value])
 
        arr[[0, 1]] = values
 
    yield integer_array_assignment
 
    def integer_array_assignment_with_subspace():
        arr = np.empty((5, 3), dtype=dtype)
        values = np.array([value, value, value])
 
        arr[[0, 2]] = values
 
    yield integer_array_assignment_with_subspace
 
    def flat_assignment():
        arr = np.empty((3,), dtype=dtype)
        values = np.array([value, value, value])
        arr.flat[:] = values
 
    yield flat_assignment
 
@pytest.mark.skipif(IS_WASM, reason="no wasm fp exception support")
@pytest.mark.parametrize(["value", "dtype"], values_and_dtypes())
@pytest.mark.filterwarnings("ignore::numpy.ComplexWarning")
def test_floatingpoint_errors_casting(dtype, value):
    dtype = np.dtype(dtype)
    for operation in check_operations(dtype, value):
        dtype = np.dtype(dtype)
 
        match = "invalid" if dtype.kind in 'iu' else "overflow"
        with pytest.warns(RuntimeWarning, match=match):
            operation()
 
        with np.errstate(all="raise"):
            with pytest.raises(FloatingPointError, match=match):
                operation()