import numpy as np
|
import pytest
|
|
import pandas as pd
|
from pandas import (
|
Series,
|
Timestamp,
|
date_range,
|
)
|
import pandas._testing as tm
|
from pandas.api.types import is_scalar
|
|
|
class TestSeriesSearchSorted:
|
def test_searchsorted(self):
|
ser = Series([1, 2, 3])
|
|
result = ser.searchsorted(1, side="left")
|
assert is_scalar(result)
|
assert result == 0
|
|
result = ser.searchsorted(1, side="right")
|
assert is_scalar(result)
|
assert result == 1
|
|
def test_searchsorted_numeric_dtypes_scalar(self):
|
ser = Series([1, 2, 90, 1000, 3e9])
|
res = ser.searchsorted(30)
|
assert is_scalar(res)
|
assert res == 2
|
|
res = ser.searchsorted([30])
|
exp = np.array([2], dtype=np.intp)
|
tm.assert_numpy_array_equal(res, exp)
|
|
def test_searchsorted_numeric_dtypes_vector(self):
|
ser = Series([1, 2, 90, 1000, 3e9])
|
res = ser.searchsorted([91, 2e6])
|
exp = np.array([3, 4], dtype=np.intp)
|
tm.assert_numpy_array_equal(res, exp)
|
|
def test_searchsorted_datetime64_scalar(self):
|
ser = Series(date_range("20120101", periods=10, freq="2D"))
|
val = Timestamp("20120102")
|
res = ser.searchsorted(val)
|
assert is_scalar(res)
|
assert res == 1
|
|
def test_searchsorted_datetime64_scalar_mixed_timezones(self):
|
# GH 30086
|
ser = Series(date_range("20120101", periods=10, freq="2D", tz="UTC"))
|
val = Timestamp("20120102", tz="America/New_York")
|
res = ser.searchsorted(val)
|
assert is_scalar(res)
|
assert res == 1
|
|
def test_searchsorted_datetime64_list(self):
|
ser = Series(date_range("20120101", periods=10, freq="2D"))
|
vals = [Timestamp("20120102"), Timestamp("20120104")]
|
res = ser.searchsorted(vals)
|
exp = np.array([1, 2], dtype=np.intp)
|
tm.assert_numpy_array_equal(res, exp)
|
|
def test_searchsorted_sorter(self):
|
# GH8490
|
ser = Series([3, 1, 2])
|
res = ser.searchsorted([0, 3], sorter=np.argsort(ser))
|
exp = np.array([0, 2], dtype=np.intp)
|
tm.assert_numpy_array_equal(res, exp)
|
|
def test_searchsorted_dataframe_fail(self):
|
# GH#49620
|
ser = Series([1, 2, 3, 4, 5])
|
vals = pd.DataFrame([[1, 2], [3, 4]])
|
msg = "Value must be 1-D array-like or scalar, DataFrame is not supported"
|
with pytest.raises(ValueError, match=msg):
|
ser.searchsorted(vals)
|