zmc
2023-10-12 ed135d79df12a2466b52dae1a82326941211dcc9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
import re
 
import numpy as np
import pytest
 
import pandas as pd
import pandas._testing as tm
from pandas.core.arrays import IntervalArray
 
 
class TestSeriesReplace:
    def test_replace_explicit_none(self):
        # GH#36984 if the user explicitly passes value=None, give it to them
        ser = pd.Series([0, 0, ""], dtype=object)
        result = ser.replace("", None)
        expected = pd.Series([0, 0, None], dtype=object)
        tm.assert_series_equal(result, expected)
 
        # Cast column 2 to object to avoid implicit cast when setting entry to ""
        df = pd.DataFrame(np.zeros((3, 3))).astype({2: object})
        df.iloc[2, 2] = ""
        result = df.replace("", None)
        expected = pd.DataFrame(
            {
                0: np.zeros(3),
                1: np.zeros(3),
                2: np.array([0.0, 0.0, None], dtype=object),
            }
        )
        assert expected.iloc[2, 2] is None
        tm.assert_frame_equal(result, expected)
 
        # GH#19998 same thing with object dtype
        ser = pd.Series([10, 20, 30, "a", "a", "b", "a"])
        result = ser.replace("a", None)
        expected = pd.Series([10, 20, 30, None, None, "b", None])
        assert expected.iloc[-1] is None
        tm.assert_series_equal(result, expected)
 
    def test_replace_noop_doesnt_downcast(self):
        # GH#44498
        ser = pd.Series([None, None, pd.Timestamp("2021-12-16 17:31")], dtype=object)
        res = ser.replace({np.nan: None})  # should be a no-op
        tm.assert_series_equal(res, ser)
        assert res.dtype == object
 
        # same thing but different calling convention
        res = ser.replace(np.nan, None)
        tm.assert_series_equal(res, ser)
        assert res.dtype == object
 
    def test_replace(self):
        N = 100
        ser = pd.Series(np.random.randn(N))
        ser[0:4] = np.nan
        ser[6:10] = 0
 
        # replace list with a single value
        return_value = ser.replace([np.nan], -1, inplace=True)
        assert return_value is None
 
        exp = ser.fillna(-1)
        tm.assert_series_equal(ser, exp)
 
        rs = ser.replace(0.0, np.nan)
        ser[ser == 0.0] = np.nan
        tm.assert_series_equal(rs, ser)
 
        ser = pd.Series(np.fabs(np.random.randn(N)), tm.makeDateIndex(N), dtype=object)
        ser[:5] = np.nan
        ser[6:10] = "foo"
        ser[20:30] = "bar"
 
        # replace list with a single value
        rs = ser.replace([np.nan, "foo", "bar"], -1)
 
        assert (rs[:5] == -1).all()
        assert (rs[6:10] == -1).all()
        assert (rs[20:30] == -1).all()
        assert (pd.isna(ser[:5])).all()
 
        # replace with different values
        rs = ser.replace({np.nan: -1, "foo": -2, "bar": -3})
 
        assert (rs[:5] == -1).all()
        assert (rs[6:10] == -2).all()
        assert (rs[20:30] == -3).all()
        assert (pd.isna(ser[:5])).all()
 
        # replace with different values with 2 lists
        rs2 = ser.replace([np.nan, "foo", "bar"], [-1, -2, -3])
        tm.assert_series_equal(rs, rs2)
 
        # replace inplace
        return_value = ser.replace([np.nan, "foo", "bar"], -1, inplace=True)
        assert return_value is None
 
        assert (ser[:5] == -1).all()
        assert (ser[6:10] == -1).all()
        assert (ser[20:30] == -1).all()
 
    def test_replace_nan_with_inf(self):
        ser = pd.Series([np.nan, 0, np.inf])
        tm.assert_series_equal(ser.replace(np.nan, 0), ser.fillna(0))
 
        ser = pd.Series([np.nan, 0, "foo", "bar", np.inf, None, pd.NaT])
        tm.assert_series_equal(ser.replace(np.nan, 0), ser.fillna(0))
        filled = ser.copy()
        filled[4] = 0
        tm.assert_series_equal(ser.replace(np.inf, 0), filled)
 
    def test_replace_listlike_value_listlike_target(self, datetime_series):
        ser = pd.Series(datetime_series.index)
        tm.assert_series_equal(ser.replace(np.nan, 0), ser.fillna(0))
 
        # malformed
        msg = r"Replacement lists must match in length\. Expecting 3 got 2"
        with pytest.raises(ValueError, match=msg):
            ser.replace([1, 2, 3], [np.nan, 0])
 
        # ser is dt64 so can't hold 1 or 2, so this replace is a no-op
        result = ser.replace([1, 2], [np.nan, 0])
        tm.assert_series_equal(result, ser)
 
        ser = pd.Series([0, 1, 2, 3, 4])
        result = ser.replace([0, 1, 2, 3, 4], [4, 3, 2, 1, 0])
        tm.assert_series_equal(result, pd.Series([4, 3, 2, 1, 0]))
 
    def test_replace_gh5319(self):
        # API change from 0.12?
        # GH 5319
        ser = pd.Series([0, np.nan, 2, 3, 4])
        expected = ser.ffill()
        result = ser.replace([np.nan])
        tm.assert_series_equal(result, expected)
 
        ser = pd.Series([0, np.nan, 2, 3, 4])
        expected = ser.ffill()
        result = ser.replace(np.nan)
        tm.assert_series_equal(result, expected)
 
    def test_replace_datetime64(self):
        # GH 5797
        ser = pd.Series(pd.date_range("20130101", periods=5))
        expected = ser.copy()
        expected.loc[2] = pd.Timestamp("20120101")
        result = ser.replace({pd.Timestamp("20130103"): pd.Timestamp("20120101")})
        tm.assert_series_equal(result, expected)
        result = ser.replace(pd.Timestamp("20130103"), pd.Timestamp("20120101"))
        tm.assert_series_equal(result, expected)
 
    def test_replace_nat_with_tz(self):
        # GH 11792: Test with replacing NaT in a list with tz data
        ts = pd.Timestamp("2015/01/01", tz="UTC")
        s = pd.Series([pd.NaT, pd.Timestamp("2015/01/01", tz="UTC")])
        result = s.replace([np.nan, pd.NaT], pd.Timestamp.min)
        expected = pd.Series([pd.Timestamp.min, ts], dtype=object)
        tm.assert_series_equal(expected, result)
 
    def test_replace_timedelta_td64(self):
        tdi = pd.timedelta_range(0, periods=5)
        ser = pd.Series(tdi)
 
        # Using a single dict argument means we go through replace_list
        result = ser.replace({ser[1]: ser[3]})
 
        expected = pd.Series([ser[0], ser[3], ser[2], ser[3], ser[4]])
        tm.assert_series_equal(result, expected)
 
    def test_replace_with_single_list(self):
        ser = pd.Series([0, 1, 2, 3, 4])
        result = ser.replace([1, 2, 3])
        tm.assert_series_equal(result, pd.Series([0, 0, 0, 0, 4]))
 
        s = ser.copy()
        return_value = s.replace([1, 2, 3], inplace=True)
        assert return_value is None
        tm.assert_series_equal(s, pd.Series([0, 0, 0, 0, 4]))
 
        # make sure things don't get corrupted when fillna call fails
        s = ser.copy()
        msg = (
            r"Invalid fill method\. Expecting pad \(ffill\) or backfill "
            r"\(bfill\)\. Got crash_cymbal"
        )
        with pytest.raises(ValueError, match=msg):
            return_value = s.replace([1, 2, 3], inplace=True, method="crash_cymbal")
            assert return_value is None
        tm.assert_series_equal(s, ser)
 
    def test_replace_mixed_types(self):
        ser = pd.Series(np.arange(5), dtype="int64")
 
        def check_replace(to_rep, val, expected):
            sc = ser.copy()
            result = ser.replace(to_rep, val)
            return_value = sc.replace(to_rep, val, inplace=True)
            assert return_value is None
            tm.assert_series_equal(expected, result)
            tm.assert_series_equal(expected, sc)
 
        # 3.0 can still be held in our int64 series, so we do not upcast GH#44940
        tr, v = [3], [3.0]
        check_replace(tr, v, ser)
        # Note this matches what we get with the scalars 3 and 3.0
        check_replace(tr[0], v[0], ser)
 
        # MUST upcast to float
        e = pd.Series([0, 1, 2, 3.5, 4])
        tr, v = [3], [3.5]
        check_replace(tr, v, e)
 
        # casts to object
        e = pd.Series([0, 1, 2, 3.5, "a"])
        tr, v = [3, 4], [3.5, "a"]
        check_replace(tr, v, e)
 
        # again casts to object
        e = pd.Series([0, 1, 2, 3.5, pd.Timestamp("20130101")])
        tr, v = [3, 4], [3.5, pd.Timestamp("20130101")]
        check_replace(tr, v, e)
 
        # casts to object
        e = pd.Series([0, 1, 2, 3.5, True], dtype="object")
        tr, v = [3, 4], [3.5, True]
        check_replace(tr, v, e)
 
        # test an object with dates + floats + integers + strings
        dr = pd.Series(pd.date_range("1/1/2001", "1/10/2001", freq="D"))
        result = dr.astype(object).replace([dr[0], dr[1], dr[2]], [1.0, 2, "a"])
        expected = pd.Series([1.0, 2, "a"] + dr[3:].tolist(), dtype=object)
        tm.assert_series_equal(result, expected)
 
    def test_replace_bool_with_string_no_op(self):
        s = pd.Series([True, False, True])
        result = s.replace("fun", "in-the-sun")
        tm.assert_series_equal(s, result)
 
    def test_replace_bool_with_string(self):
        # nonexistent elements
        s = pd.Series([True, False, True])
        result = s.replace(True, "2u")
        expected = pd.Series(["2u", False, "2u"])
        tm.assert_series_equal(expected, result)
 
    def test_replace_bool_with_bool(self):
        s = pd.Series([True, False, True])
        result = s.replace(True, False)
        expected = pd.Series([False] * len(s))
        tm.assert_series_equal(expected, result)
 
    def test_replace_with_dict_with_bool_keys(self):
        s = pd.Series([True, False, True])
        result = s.replace({"asdf": "asdb", True: "yes"})
        expected = pd.Series(["yes", False, "yes"])
        tm.assert_series_equal(result, expected)
 
    def test_replace_Int_with_na(self, any_int_ea_dtype):
        # GH 38267
        result = pd.Series([0, None], dtype=any_int_ea_dtype).replace(0, pd.NA)
        expected = pd.Series([pd.NA, pd.NA], dtype=any_int_ea_dtype)
        tm.assert_series_equal(result, expected)
        result = pd.Series([0, 1], dtype=any_int_ea_dtype).replace(0, pd.NA)
        result.replace(1, pd.NA, inplace=True)
        tm.assert_series_equal(result, expected)
 
    def test_replace2(self):
        N = 100
        ser = pd.Series(np.fabs(np.random.randn(N)), tm.makeDateIndex(N), dtype=object)
        ser[:5] = np.nan
        ser[6:10] = "foo"
        ser[20:30] = "bar"
 
        # replace list with a single value
        rs = ser.replace([np.nan, "foo", "bar"], -1)
 
        assert (rs[:5] == -1).all()
        assert (rs[6:10] == -1).all()
        assert (rs[20:30] == -1).all()
        assert (pd.isna(ser[:5])).all()
 
        # replace with different values
        rs = ser.replace({np.nan: -1, "foo": -2, "bar": -3})
 
        assert (rs[:5] == -1).all()
        assert (rs[6:10] == -2).all()
        assert (rs[20:30] == -3).all()
        assert (pd.isna(ser[:5])).all()
 
        # replace with different values with 2 lists
        rs2 = ser.replace([np.nan, "foo", "bar"], [-1, -2, -3])
        tm.assert_series_equal(rs, rs2)
 
        # replace inplace
        return_value = ser.replace([np.nan, "foo", "bar"], -1, inplace=True)
        assert return_value is None
        assert (ser[:5] == -1).all()
        assert (ser[6:10] == -1).all()
        assert (ser[20:30] == -1).all()
 
    @pytest.mark.parametrize("inplace", [True, False])
    def test_replace_cascade(self, inplace):
        # Test that replaced values are not replaced again
        # GH #50778
        ser = pd.Series([1, 2, 3])
        expected = pd.Series([2, 3, 4])
 
        res = ser.replace([1, 2, 3], [2, 3, 4], inplace=inplace)
        if inplace:
            tm.assert_series_equal(ser, expected)
        else:
            tm.assert_series_equal(res, expected)
 
    def test_replace_with_dictlike_and_string_dtype(self, nullable_string_dtype):
        # GH 32621, GH#44940
        ser = pd.Series(["one", "two", np.nan], dtype=nullable_string_dtype)
        expected = pd.Series(["1", "2", np.nan], dtype=nullable_string_dtype)
        result = ser.replace({"one": "1", "two": "2"})
        tm.assert_series_equal(expected, result)
 
    def test_replace_with_empty_dictlike(self):
        # GH 15289
        s = pd.Series(list("abcd"))
        tm.assert_series_equal(s, s.replace({}))
 
        empty_series = pd.Series([])
        tm.assert_series_equal(s, s.replace(empty_series))
 
    def test_replace_string_with_number(self):
        # GH 15743
        s = pd.Series([1, 2, 3])
        result = s.replace("2", np.nan)
        expected = pd.Series([1, 2, 3])
        tm.assert_series_equal(expected, result)
 
    def test_replace_replacer_equals_replacement(self):
        # GH 20656
        # make sure all replacers are matching against original values
        s = pd.Series(["a", "b"])
        expected = pd.Series(["b", "a"])
        result = s.replace({"a": "b", "b": "a"})
        tm.assert_series_equal(expected, result)
 
    def test_replace_unicode_with_number(self):
        # GH 15743
        s = pd.Series([1, 2, 3])
        result = s.replace("2", np.nan)
        expected = pd.Series([1, 2, 3])
        tm.assert_series_equal(expected, result)
 
    def test_replace_mixed_types_with_string(self):
        # Testing mixed
        s = pd.Series([1, 2, 3, "4", 4, 5])
        result = s.replace([2, "4"], np.nan)
        expected = pd.Series([1, np.nan, 3, np.nan, 4, 5])
        tm.assert_series_equal(expected, result)
 
    @pytest.mark.parametrize(
        "categorical, numeric",
        [
            (pd.Categorical(["A"], categories=["A", "B"]), [1]),
            (pd.Categorical(["A", "B"], categories=["A", "B"]), [1, 2]),
        ],
    )
    def test_replace_categorical(self, categorical, numeric):
        # GH 24971, GH#23305
        ser = pd.Series(categorical)
        result = ser.replace({"A": 1, "B": 2})
        expected = pd.Series(numeric).astype("category")
        if 2 not in expected.cat.categories:
            # i.e. categories should be [1, 2] even if there are no "B"s present
            # GH#44940
            expected = expected.cat.add_categories(2)
        tm.assert_series_equal(expected, result)
 
    def test_replace_categorical_single(self):
        # GH 26988
        dti = pd.date_range("2016-01-01", periods=3, tz="US/Pacific")
        s = pd.Series(dti)
        c = s.astype("category")
 
        expected = c.copy()
        expected = expected.cat.add_categories("foo")
        expected[2] = "foo"
        expected = expected.cat.remove_unused_categories()
        assert c[2] != "foo"
 
        result = c.replace(c[2], "foo")
        tm.assert_series_equal(expected, result)
        assert c[2] != "foo"  # ensure non-inplace call does not alter original
 
        return_value = c.replace(c[2], "foo", inplace=True)
        assert return_value is None
        tm.assert_series_equal(expected, c)
 
        first_value = c[0]
        return_value = c.replace(c[1], c[0], inplace=True)
        assert return_value is None
        assert c[0] == c[1] == first_value  # test replacing with existing value
 
    def test_replace_with_no_overflowerror(self):
        # GH 25616
        # casts to object without Exception from OverflowError
        s = pd.Series([0, 1, 2, 3, 4])
        result = s.replace([3], ["100000000000000000000"])
        expected = pd.Series([0, 1, 2, "100000000000000000000", 4])
        tm.assert_series_equal(result, expected)
 
        s = pd.Series([0, "100000000000000000000", "100000000000000000001"])
        result = s.replace(["100000000000000000000"], [1])
        expected = pd.Series([0, 1, "100000000000000000001"])
        tm.assert_series_equal(result, expected)
 
    @pytest.mark.parametrize(
        "ser, to_replace, exp",
        [
            ([1, 2, 3], {1: 2, 2: 3, 3: 4}, [2, 3, 4]),
            (["1", "2", "3"], {"1": "2", "2": "3", "3": "4"}, ["2", "3", "4"]),
        ],
    )
    def test_replace_commutative(self, ser, to_replace, exp):
        # GH 16051
        # DataFrame.replace() overwrites when values are non-numeric
 
        series = pd.Series(ser)
 
        expected = pd.Series(exp)
        result = series.replace(to_replace)
 
        tm.assert_series_equal(result, expected)
 
    @pytest.mark.parametrize(
        "ser, exp", [([1, 2, 3], [1, True, 3]), (["x", 2, 3], ["x", True, 3])]
    )
    def test_replace_no_cast(self, ser, exp):
        # GH 9113
        # BUG: replace int64 dtype with bool coerces to int64
 
        series = pd.Series(ser)
        result = series.replace(2, True)
        expected = pd.Series(exp)
 
        tm.assert_series_equal(result, expected)
 
    def test_replace_invalid_to_replace(self):
        # GH 18634
        # API: replace() should raise an exception if invalid argument is given
        series = pd.Series(["a", "b", "c "])
        msg = (
            r"Expecting 'to_replace' to be either a scalar, array-like, "
            r"dict or None, got invalid type.*"
        )
        with pytest.raises(TypeError, match=msg):
            series.replace(lambda x: x.strip())
 
    @pytest.mark.parametrize("frame", [False, True])
    def test_replace_nonbool_regex(self, frame):
        obj = pd.Series(["a", "b", "c "])
        if frame:
            obj = obj.to_frame()
 
        msg = "'to_replace' must be 'None' if 'regex' is not a bool"
        with pytest.raises(ValueError, match=msg):
            obj.replace(to_replace=["a"], regex="foo")
 
    @pytest.mark.parametrize("frame", [False, True])
    def test_replace_empty_copy(self, frame):
        obj = pd.Series([], dtype=np.float64)
        if frame:
            obj = obj.to_frame()
 
        res = obj.replace(4, 5, inplace=True)
        assert res is None
 
        res = obj.replace(4, 5, inplace=False)
        tm.assert_equal(res, obj)
        assert res is not obj
 
    def test_replace_only_one_dictlike_arg(self, fixed_now_ts):
        # GH#33340
 
        ser = pd.Series([1, 2, "A", fixed_now_ts, True])
        to_replace = {0: 1, 2: "A"}
        value = "foo"
        msg = "Series.replace cannot use dict-like to_replace and non-None value"
        with pytest.raises(ValueError, match=msg):
            ser.replace(to_replace, value)
 
        to_replace = 1
        value = {0: "foo", 2: "bar"}
        msg = "Series.replace cannot use dict-value and non-None to_replace"
        with pytest.raises(ValueError, match=msg):
            ser.replace(to_replace, value)
 
    def test_replace_extension_other(self, frame_or_series):
        # https://github.com/pandas-dev/pandas/issues/34530
        obj = frame_or_series(pd.array([1, 2, 3], dtype="Int64"))
        result = obj.replace("", "")  # no exception
        # should not have changed dtype
        tm.assert_equal(obj, result)
 
    def _check_replace_with_method(self, ser: pd.Series):
        df = ser.to_frame()
 
        res = ser.replace(ser[1], method="pad")
        expected = pd.Series([ser[0], ser[0]] + list(ser[2:]), dtype=ser.dtype)
        tm.assert_series_equal(res, expected)
 
        res_df = df.replace(ser[1], method="pad")
        tm.assert_frame_equal(res_df, expected.to_frame())
 
        ser2 = ser.copy()
        res2 = ser2.replace(ser[1], method="pad", inplace=True)
        assert res2 is None
        tm.assert_series_equal(ser2, expected)
 
        res_df2 = df.replace(ser[1], method="pad", inplace=True)
        assert res_df2 is None
        tm.assert_frame_equal(df, expected.to_frame())
 
    def test_replace_ea_dtype_with_method(self, any_numeric_ea_dtype):
        arr = pd.array([1, 2, pd.NA, 4], dtype=any_numeric_ea_dtype)
        ser = pd.Series(arr)
 
        self._check_replace_with_method(ser)
 
    @pytest.mark.parametrize("as_categorical", [True, False])
    def test_replace_interval_with_method(self, as_categorical):
        # in particular interval that can't hold NA
 
        idx = pd.IntervalIndex.from_breaks(range(4))
        ser = pd.Series(idx)
        if as_categorical:
            ser = ser.astype("category")
 
        self._check_replace_with_method(ser)
 
    @pytest.mark.parametrize("as_period", [True, False])
    @pytest.mark.parametrize("as_categorical", [True, False])
    def test_replace_datetimelike_with_method(self, as_period, as_categorical):
        idx = pd.date_range("2016-01-01", periods=5, tz="US/Pacific")
        if as_period:
            idx = idx.tz_localize(None).to_period("D")
 
        ser = pd.Series(idx)
        ser.iloc[-2] = pd.NaT
        if as_categorical:
            ser = ser.astype("category")
 
        self._check_replace_with_method(ser)
 
    def test_replace_with_compiled_regex(self):
        # https://github.com/pandas-dev/pandas/issues/35680
        s = pd.Series(["a", "b", "c"])
        regex = re.compile("^a$")
        result = s.replace({regex: "z"}, regex=True)
        expected = pd.Series(["z", "b", "c"])
        tm.assert_series_equal(result, expected)
 
    def test_pandas_replace_na(self):
        # GH#43344
        ser = pd.Series(["AA", "BB", "CC", "DD", "EE", "", pd.NA], dtype="string")
        regex_mapping = {
            "AA": "CC",
            "BB": "CC",
            "EE": "CC",
            "CC": "CC-REPL",
        }
        result = ser.replace(regex_mapping, regex=True)
        exp = pd.Series(["CC", "CC", "CC-REPL", "DD", "CC", "", pd.NA], dtype="string")
        tm.assert_series_equal(result, exp)
 
    @pytest.mark.parametrize(
        "dtype, input_data, to_replace, expected_data",
        [
            ("bool", [True, False], {True: False}, [False, False]),
            ("int64", [1, 2], {1: 10, 2: 20}, [10, 20]),
            ("Int64", [1, 2], {1: 10, 2: 20}, [10, 20]),
            ("float64", [1.1, 2.2], {1.1: 10.1, 2.2: 20.5}, [10.1, 20.5]),
            ("Float64", [1.1, 2.2], {1.1: 10.1, 2.2: 20.5}, [10.1, 20.5]),
            ("string", ["one", "two"], {"one": "1", "two": "2"}, ["1", "2"]),
            (
                pd.IntervalDtype("int64"),
                IntervalArray([pd.Interval(1, 2), pd.Interval(2, 3)]),
                {pd.Interval(1, 2): pd.Interval(10, 20)},
                IntervalArray([pd.Interval(10, 20), pd.Interval(2, 3)]),
            ),
            (
                pd.IntervalDtype("float64"),
                IntervalArray([pd.Interval(1.0, 2.7), pd.Interval(2.8, 3.1)]),
                {pd.Interval(1.0, 2.7): pd.Interval(10.6, 20.8)},
                IntervalArray([pd.Interval(10.6, 20.8), pd.Interval(2.8, 3.1)]),
            ),
            (
                pd.PeriodDtype("M"),
                [pd.Period("2020-05", freq="M")],
                {pd.Period("2020-05", freq="M"): pd.Period("2020-06", freq="M")},
                [pd.Period("2020-06", freq="M")],
            ),
        ],
    )
    def test_replace_dtype(self, dtype, input_data, to_replace, expected_data):
        # GH#33484
        ser = pd.Series(input_data, dtype=dtype)
        result = ser.replace(to_replace)
        expected = pd.Series(expected_data, dtype=dtype)
        tm.assert_series_equal(result, expected)
 
    def test_replace_string_dtype(self):
        # GH#40732, GH#44940
        ser = pd.Series(["one", "two", np.nan], dtype="string")
        res = ser.replace({"one": "1", "two": "2"})
        expected = pd.Series(["1", "2", np.nan], dtype="string")
        tm.assert_series_equal(res, expected)
 
        # GH#31644
        ser2 = pd.Series(["A", np.nan], dtype="string")
        res2 = ser2.replace("A", "B")
        expected2 = pd.Series(["B", np.nan], dtype="string")
        tm.assert_series_equal(res2, expected2)
 
        ser3 = pd.Series(["A", "B"], dtype="string")
        res3 = ser3.replace("A", pd.NA)
        expected3 = pd.Series([pd.NA, "B"], dtype="string")
        tm.assert_series_equal(res3, expected3)
 
    def test_replace_string_dtype_list_to_replace(self):
        # GH#41215, GH#44940
        ser = pd.Series(["abc", "def"], dtype="string")
        res = ser.replace(["abc", "any other string"], "xyz")
        expected = pd.Series(["xyz", "def"], dtype="string")
        tm.assert_series_equal(res, expected)
 
    def test_replace_string_dtype_regex(self):
        # GH#31644
        ser = pd.Series(["A", "B"], dtype="string")
        res = ser.replace(r".", "C", regex=True)
        expected = pd.Series(["C", "C"], dtype="string")
        tm.assert_series_equal(res, expected)
 
    def test_replace_nullable_numeric(self):
        # GH#40732, GH#44940
 
        floats = pd.Series([1.0, 2.0, 3.999, 4.4], dtype=pd.Float64Dtype())
        assert floats.replace({1.0: 9}).dtype == floats.dtype
        assert floats.replace(1.0, 9).dtype == floats.dtype
        assert floats.replace({1.0: 9.0}).dtype == floats.dtype
        assert floats.replace(1.0, 9.0).dtype == floats.dtype
 
        res = floats.replace(to_replace=[1.0, 2.0], value=[9.0, 10.0])
        assert res.dtype == floats.dtype
 
        ints = pd.Series([1, 2, 3, 4], dtype=pd.Int64Dtype())
        assert ints.replace({1: 9}).dtype == ints.dtype
        assert ints.replace(1, 9).dtype == ints.dtype
        assert ints.replace({1: 9.0}).dtype == ints.dtype
        assert ints.replace(1, 9.0).dtype == ints.dtype
 
        # nullable (for now) raises instead of casting
        with pytest.raises(TypeError, match="Invalid value"):
            ints.replace({1: 9.5})
        with pytest.raises(TypeError, match="Invalid value"):
            ints.replace(1, 9.5)
 
    @pytest.mark.parametrize("regex", [False, True])
    def test_replace_regex_dtype_series(self, regex):
        # GH-48644
        series = pd.Series(["0"])
        expected = pd.Series([1])
        result = series.replace(to_replace="0", value=1, regex=regex)
        tm.assert_series_equal(result, expected)
 
    def test_replace_different_int_types(self, any_int_numpy_dtype):
        # GH#45311
        labs = pd.Series([1, 1, 1, 0, 0, 2, 2, 2], dtype=any_int_numpy_dtype)
 
        maps = pd.Series([0, 2, 1], dtype=any_int_numpy_dtype)
        map_dict = dict(zip(maps.values, maps.index))
 
        result = labs.replace(map_dict)
        expected = labs.replace({0: 0, 2: 1, 1: 2})
        tm.assert_series_equal(result, expected)
 
    @pytest.mark.parametrize("val", [2, np.nan, 2.0])
    def test_replace_value_none_dtype_numeric(self, val):
        # GH#48231
        ser = pd.Series([1, val])
        result = ser.replace(val, None)
        expected = pd.Series([1, None], dtype=object)
        tm.assert_series_equal(result, expected)
 
    def test_replace_change_dtype_series(self):
        # GH#25797
        df = pd.DataFrame.from_dict({"Test": ["0.5", True, "0.6"]})
        df["Test"] = df["Test"].replace([True], [np.nan])
        expected = pd.DataFrame.from_dict({"Test": ["0.5", np.nan, "0.6"]})
        tm.assert_frame_equal(df, expected)
 
        df = pd.DataFrame.from_dict({"Test": ["0.5", None, "0.6"]})
        df["Test"] = df["Test"].replace([None], [np.nan])
        tm.assert_frame_equal(df, expected)
 
        df = pd.DataFrame.from_dict({"Test": ["0.5", None, "0.6"]})
        df["Test"] = df["Test"].fillna(np.nan)
        tm.assert_frame_equal(df, expected)
 
    @pytest.mark.parametrize("dtype", ["object", "Int64"])
    def test_replace_na_in_obj_column(self, dtype):
        # GH#47480
        ser = pd.Series([0, 1, pd.NA], dtype=dtype)
        expected = pd.Series([0, 2, pd.NA], dtype=dtype)
        result = ser.replace(to_replace=1, value=2)
        tm.assert_series_equal(result, expected)
 
        ser.replace(to_replace=1, value=2, inplace=True)
        tm.assert_series_equal(ser, expected)
 
    @pytest.mark.parametrize("val", [0, 0.5])
    def test_replace_numeric_column_with_na(self, val):
        # GH#50758
        ser = pd.Series([val, 1])
        expected = pd.Series([val, pd.NA])
        result = ser.replace(to_replace=1, value=pd.NA)
        tm.assert_series_equal(result, expected)
 
        ser.replace(to_replace=1, value=pd.NA, inplace=True)
        tm.assert_series_equal(ser, expected)