zmc
2023-10-12 ed135d79df12a2466b52dae1a82326941211dcc9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
import datetime as dt
from itertools import combinations
 
import dateutil
import numpy as np
import pytest
 
import pandas as pd
from pandas import (
    DataFrame,
    Index,
    Series,
    Timestamp,
    concat,
    isna,
)
import pandas._testing as tm
 
 
class TestAppend:
    def test_append(self, sort, float_frame):
        mixed_frame = float_frame.copy()
        mixed_frame["foo"] = "bar"
 
        begin_index = float_frame.index[:5]
        end_index = float_frame.index[5:]
 
        begin_frame = float_frame.reindex(begin_index)
        end_frame = float_frame.reindex(end_index)
 
        appended = begin_frame._append(end_frame)
        tm.assert_almost_equal(appended["A"], float_frame["A"])
 
        del end_frame["A"]
        partial_appended = begin_frame._append(end_frame, sort=sort)
        assert "A" in partial_appended
 
        partial_appended = end_frame._append(begin_frame, sort=sort)
        assert "A" in partial_appended
 
        # mixed type handling
        appended = mixed_frame[:5]._append(mixed_frame[5:])
        tm.assert_frame_equal(appended, mixed_frame)
 
        # what to test here
        mixed_appended = mixed_frame[:5]._append(float_frame[5:], sort=sort)
        mixed_appended2 = float_frame[:5]._append(mixed_frame[5:], sort=sort)
 
        # all equal except 'foo' column
        tm.assert_frame_equal(
            mixed_appended.reindex(columns=["A", "B", "C", "D"]),
            mixed_appended2.reindex(columns=["A", "B", "C", "D"]),
        )
 
    def test_append_empty(self, float_frame):
        empty = DataFrame()
 
        appended = float_frame._append(empty)
        tm.assert_frame_equal(float_frame, appended)
        assert appended is not float_frame
 
        appended = empty._append(float_frame)
        tm.assert_frame_equal(float_frame, appended)
        assert appended is not float_frame
 
    def test_append_overlap_raises(self, float_frame):
        msg = "Indexes have overlapping values"
        with pytest.raises(ValueError, match=msg):
            float_frame._append(float_frame, verify_integrity=True)
 
    def test_append_new_columns(self):
        # see gh-6129: new columns
        df = DataFrame({"a": {"x": 1, "y": 2}, "b": {"x": 3, "y": 4}})
        row = Series([5, 6, 7], index=["a", "b", "c"], name="z")
        expected = DataFrame(
            {
                "a": {"x": 1, "y": 2, "z": 5},
                "b": {"x": 3, "y": 4, "z": 6},
                "c": {"z": 7},
            }
        )
        result = df._append(row)
        tm.assert_frame_equal(result, expected)
 
    def test_append_length0_frame(self, sort):
        df = DataFrame(columns=["A", "B", "C"])
        df3 = DataFrame(index=[0, 1], columns=["A", "B"])
        df5 = df._append(df3, sort=sort)
 
        expected = DataFrame(index=[0, 1], columns=["A", "B", "C"])
        tm.assert_frame_equal(df5, expected)
 
    def test_append_records(self):
        arr1 = np.zeros((2,), dtype=("i4,f4,a10"))
        arr1[:] = [(1, 2.0, "Hello"), (2, 3.0, "World")]
 
        arr2 = np.zeros((3,), dtype=("i4,f4,a10"))
        arr2[:] = [(3, 4.0, "foo"), (5, 6.0, "bar"), (7.0, 8.0, "baz")]
 
        df1 = DataFrame(arr1)
        df2 = DataFrame(arr2)
 
        result = df1._append(df2, ignore_index=True)
        expected = DataFrame(np.concatenate((arr1, arr2)))
        tm.assert_frame_equal(result, expected)
 
    # rewrite sort fixture, since we also want to test default of None
    def test_append_sorts(self, sort):
        df1 = DataFrame({"a": [1, 2], "b": [1, 2]}, columns=["b", "a"])
        df2 = DataFrame({"a": [1, 2], "c": [3, 4]}, index=[2, 3])
 
        result = df1._append(df2, sort=sort)
 
        # for None / True
        expected = DataFrame(
            {"b": [1, 2, None, None], "a": [1, 2, 1, 2], "c": [None, None, 3, 4]},
            columns=["a", "b", "c"],
        )
        if sort is False:
            expected = expected[["b", "a", "c"]]
        tm.assert_frame_equal(result, expected)
 
    def test_append_different_columns(self, sort):
        df = DataFrame(
            {
                "bools": np.random.randn(10) > 0,
                "ints": np.random.randint(0, 10, 10),
                "floats": np.random.randn(10),
                "strings": ["foo", "bar"] * 5,
            }
        )
 
        a = df[:5].loc[:, ["bools", "ints", "floats"]]
        b = df[5:].loc[:, ["strings", "ints", "floats"]]
 
        appended = a._append(b, sort=sort)
        assert isna(appended["strings"][0:4]).all()
        assert isna(appended["bools"][5:]).all()
 
    def test_append_many(self, sort, float_frame):
        chunks = [
            float_frame[:5],
            float_frame[5:10],
            float_frame[10:15],
            float_frame[15:],
        ]
 
        result = chunks[0]._append(chunks[1:])
        tm.assert_frame_equal(result, float_frame)
 
        chunks[-1] = chunks[-1].copy()
        chunks[-1]["foo"] = "bar"
        result = chunks[0]._append(chunks[1:], sort=sort)
        tm.assert_frame_equal(result.loc[:, float_frame.columns], float_frame)
        assert (result["foo"][15:] == "bar").all()
        assert result["foo"][:15].isna().all()
 
    def test_append_preserve_index_name(self):
        # #980
        df1 = DataFrame(columns=["A", "B", "C"])
        df1 = df1.set_index(["A"])
        df2 = DataFrame(data=[[1, 4, 7], [2, 5, 8], [3, 6, 9]], columns=["A", "B", "C"])
        df2 = df2.set_index(["A"])
 
        result = df1._append(df2)
        assert result.index.name == "A"
 
    indexes_can_append = [
        pd.RangeIndex(3),
        Index([4, 5, 6]),
        Index([4.5, 5.5, 6.5]),
        Index(list("abc")),
        pd.CategoricalIndex("A B C".split()),
        pd.CategoricalIndex("D E F".split(), ordered=True),
        pd.IntervalIndex.from_breaks([7, 8, 9, 10]),
        pd.DatetimeIndex(
            [
                dt.datetime(2013, 1, 3, 0, 0),
                dt.datetime(2013, 1, 3, 6, 10),
                dt.datetime(2013, 1, 3, 7, 12),
            ]
        ),
        pd.MultiIndex.from_arrays(["A B C".split(), "D E F".split()]),
    ]
 
    @pytest.mark.parametrize(
        "index", indexes_can_append, ids=lambda x: type(x).__name__
    )
    def test_append_same_columns_type(self, index):
        # GH18359
 
        # df wider than ser
        df = DataFrame([[1, 2, 3], [4, 5, 6]], columns=index)
        ser_index = index[:2]
        ser = Series([7, 8], index=ser_index, name=2)
        result = df._append(ser)
        expected = DataFrame(
            [[1, 2, 3.0], [4, 5, 6], [7, 8, np.nan]], index=[0, 1, 2], columns=index
        )
        # integer dtype is preserved for columns present in ser.index
        assert expected.dtypes.iloc[0].kind == "i"
        assert expected.dtypes.iloc[1].kind == "i"
 
        tm.assert_frame_equal(result, expected)
 
        # ser wider than df
        ser_index = index
        index = index[:2]
        df = DataFrame([[1, 2], [4, 5]], columns=index)
        ser = Series([7, 8, 9], index=ser_index, name=2)
        result = df._append(ser)
        expected = DataFrame(
            [[1, 2, np.nan], [4, 5, np.nan], [7, 8, 9]],
            index=[0, 1, 2],
            columns=ser_index,
        )
        tm.assert_frame_equal(result, expected)
 
    @pytest.mark.parametrize(
        "df_columns, series_index",
        combinations(indexes_can_append, r=2),
        ids=lambda x: type(x).__name__,
    )
    def test_append_different_columns_types(self, df_columns, series_index):
        # GH18359
        # See also test 'test_append_different_columns_types_raises' below
        # for errors raised when appending
 
        df = DataFrame([[1, 2, 3], [4, 5, 6]], columns=df_columns)
        ser = Series([7, 8, 9], index=series_index, name=2)
 
        result = df._append(ser)
        idx_diff = ser.index.difference(df_columns)
        combined_columns = Index(df_columns.tolist()).append(idx_diff)
        expected = DataFrame(
            [
                [1.0, 2.0, 3.0, np.nan, np.nan, np.nan],
                [4, 5, 6, np.nan, np.nan, np.nan],
                [np.nan, np.nan, np.nan, 7, 8, 9],
            ],
            index=[0, 1, 2],
            columns=combined_columns,
        )
        tm.assert_frame_equal(result, expected)
 
    def test_append_dtype_coerce(self, sort):
        # GH 4993
        # appending with datetime will incorrectly convert datetime64
 
        df1 = DataFrame(
            index=[1, 2],
            data=[dt.datetime(2013, 1, 1, 0, 0), dt.datetime(2013, 1, 2, 0, 0)],
            columns=["start_time"],
        )
        df2 = DataFrame(
            index=[4, 5],
            data=[
                [dt.datetime(2013, 1, 3, 0, 0), dt.datetime(2013, 1, 3, 6, 10)],
                [dt.datetime(2013, 1, 4, 0, 0), dt.datetime(2013, 1, 4, 7, 10)],
            ],
            columns=["start_time", "end_time"],
        )
 
        expected = concat(
            [
                Series(
                    [
                        pd.NaT,
                        pd.NaT,
                        dt.datetime(2013, 1, 3, 6, 10),
                        dt.datetime(2013, 1, 4, 7, 10),
                    ],
                    name="end_time",
                ),
                Series(
                    [
                        dt.datetime(2013, 1, 1, 0, 0),
                        dt.datetime(2013, 1, 2, 0, 0),
                        dt.datetime(2013, 1, 3, 0, 0),
                        dt.datetime(2013, 1, 4, 0, 0),
                    ],
                    name="start_time",
                ),
            ],
            axis=1,
            sort=sort,
        )
        result = df1._append(df2, ignore_index=True, sort=sort)
        if sort:
            expected = expected[["end_time", "start_time"]]
        else:
            expected = expected[["start_time", "end_time"]]
 
        tm.assert_frame_equal(result, expected)
 
    def test_append_missing_column_proper_upcast(self, sort):
        df1 = DataFrame({"A": np.array([1, 2, 3, 4], dtype="i8")})
        df2 = DataFrame({"B": np.array([True, False, True, False], dtype=bool)})
 
        appended = df1._append(df2, ignore_index=True, sort=sort)
        assert appended["A"].dtype == "f8"
        assert appended["B"].dtype == "O"
 
    def test_append_empty_frame_to_series_with_dateutil_tz(self):
        # GH 23682
        date = Timestamp("2018-10-24 07:30:00", tz=dateutil.tz.tzutc())
        ser = Series({"a": 1.0, "b": 2.0, "date": date})
        df = DataFrame(columns=["c", "d"])
        result_a = df._append(ser, ignore_index=True)
        expected = DataFrame(
            [[np.nan, np.nan, 1.0, 2.0, date]], columns=["c", "d", "a", "b", "date"]
        )
        # These columns get cast to object after append
        expected["c"] = expected["c"].astype(object)
        expected["d"] = expected["d"].astype(object)
        tm.assert_frame_equal(result_a, expected)
 
        expected = DataFrame(
            [[np.nan, np.nan, 1.0, 2.0, date]] * 2, columns=["c", "d", "a", "b", "date"]
        )
        expected["c"] = expected["c"].astype(object)
        expected["d"] = expected["d"].astype(object)
        result_b = result_a._append(ser, ignore_index=True)
        tm.assert_frame_equal(result_b, expected)
 
        result = df._append([ser, ser], ignore_index=True)
        tm.assert_frame_equal(result, expected)
 
    def test_append_empty_tz_frame_with_datetime64ns(self):
        # https://github.com/pandas-dev/pandas/issues/35460
        df = DataFrame(columns=["a"]).astype("datetime64[ns, UTC]")
 
        # pd.NaT gets inferred as tz-naive, so append result is tz-naive
        result = df._append({"a": pd.NaT}, ignore_index=True)
        expected = DataFrame({"a": [pd.NaT]}).astype(object)
        tm.assert_frame_equal(result, expected)
 
        # also test with typed value to append
        df = DataFrame(columns=["a"]).astype("datetime64[ns, UTC]")
        other = Series({"a": pd.NaT}, dtype="datetime64[ns]")
        result = df._append(other, ignore_index=True)
        expected = DataFrame({"a": [pd.NaT]}).astype(object)
        tm.assert_frame_equal(result, expected)
 
        # mismatched tz
        other = Series({"a": pd.NaT}, dtype="datetime64[ns, US/Pacific]")
        result = df._append(other, ignore_index=True)
        expected = DataFrame({"a": [pd.NaT]}).astype(object)
        tm.assert_frame_equal(result, expected)
 
    @pytest.mark.parametrize(
        "dtype_str", ["datetime64[ns, UTC]", "datetime64[ns]", "Int64", "int64"]
    )
    @pytest.mark.parametrize("val", [1, "NaT"])
    def test_append_empty_frame_with_timedelta64ns_nat(self, dtype_str, val):
        # https://github.com/pandas-dev/pandas/issues/35460
        df = DataFrame(columns=["a"]).astype(dtype_str)
 
        other = DataFrame({"a": [np.timedelta64(val, "ns")]})
        result = df._append(other, ignore_index=True)
 
        expected = other.astype(object)
        tm.assert_frame_equal(result, expected)
 
    @pytest.mark.parametrize(
        "dtype_str", ["datetime64[ns, UTC]", "datetime64[ns]", "Int64", "int64"]
    )
    @pytest.mark.parametrize("val", [1, "NaT"])
    def test_append_frame_with_timedelta64ns_nat(self, dtype_str, val):
        # https://github.com/pandas-dev/pandas/issues/35460
        df = DataFrame({"a": pd.array([1], dtype=dtype_str)})
 
        other = DataFrame({"a": [np.timedelta64(val, "ns")]})
        result = df._append(other, ignore_index=True)
 
        expected = DataFrame({"a": [df.iloc[0, 0], other.iloc[0, 0]]}, dtype=object)
        tm.assert_frame_equal(result, expected)