zmc
2023-10-12 ed135d79df12a2466b52dae1a82326941211dcc9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
""" Test cases for .boxplot method """
 
import itertools
import string
 
import numpy as np
import pytest
 
import pandas.util._test_decorators as td
 
from pandas import (
    DataFrame,
    MultiIndex,
    Series,
    date_range,
    plotting,
    timedelta_range,
)
import pandas._testing as tm
from pandas.tests.plotting.common import (
    TestPlotBase,
    _check_plot_works,
)
 
from pandas.io.formats.printing import pprint_thing
 
 
@td.skip_if_no_mpl
class TestDataFramePlots(TestPlotBase):
    def test_stacked_boxplot_set_axis(self):
        # GH2980
        import matplotlib.pyplot as plt
 
        n = 80
        df = DataFrame(
            {
                "Clinical": np.random.choice([0, 1, 2, 3], n),
                "Confirmed": np.random.choice([0, 1, 2, 3], n),
                "Discarded": np.random.choice([0, 1, 2, 3], n),
            },
            index=np.arange(0, n),
        )
        ax = df.plot(kind="bar", stacked=True)
        assert [int(x.get_text()) for x in ax.get_xticklabels()] == df.index.to_list()
        ax.set_xticks(np.arange(0, 80, 10))
        plt.draw()  # Update changes
        assert [int(x.get_text()) for x in ax.get_xticklabels()] == list(
            np.arange(0, 80, 10)
        )
 
    @pytest.mark.slow
    def test_boxplot_legacy1(self):
        df = DataFrame(
            np.random.randn(6, 4),
            index=list(string.ascii_letters[:6]),
            columns=["one", "two", "three", "four"],
        )
        df["indic"] = ["foo", "bar"] * 3
        df["indic2"] = ["foo", "bar", "foo"] * 2
 
        _check_plot_works(df.boxplot, return_type="dict")
        _check_plot_works(df.boxplot, column=["one", "two"], return_type="dict")
        # _check_plot_works adds an ax so catch warning. see GH #13188
        with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
            _check_plot_works(df.boxplot, column=["one", "two"], by="indic")
        _check_plot_works(df.boxplot, column="one", by=["indic", "indic2"])
        with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
            _check_plot_works(df.boxplot, by="indic")
        with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
            _check_plot_works(df.boxplot, by=["indic", "indic2"])
        _check_plot_works(plotting._core.boxplot, data=df["one"], return_type="dict")
        _check_plot_works(df.boxplot, notch=1, return_type="dict")
        with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
            _check_plot_works(df.boxplot, by="indic", notch=1)
 
    def test_boxplot_legacy2(self):
        df = DataFrame(np.random.rand(10, 2), columns=["Col1", "Col2"])
        df["X"] = Series(["A", "A", "A", "A", "A", "B", "B", "B", "B", "B"])
        df["Y"] = Series(["A"] * 10)
        with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
            _check_plot_works(df.boxplot, by="X")
 
        # When ax is supplied and required number of axes is 1,
        # passed ax should be used:
        fig, ax = self.plt.subplots()
        axes = df.boxplot("Col1", by="X", ax=ax)
        ax_axes = ax.axes
        assert ax_axes is axes
 
        fig, ax = self.plt.subplots()
        axes = df.groupby("Y").boxplot(ax=ax, return_type="axes")
        ax_axes = ax.axes
        assert ax_axes is axes["A"]
 
        # Multiple columns with an ax argument should use same figure
        fig, ax = self.plt.subplots()
        with tm.assert_produces_warning(UserWarning):
            axes = df.boxplot(
                column=["Col1", "Col2"], by="X", ax=ax, return_type="axes"
            )
        assert axes["Col1"].get_figure() is fig
 
        # When by is None, check that all relevant lines are present in the
        # dict
        fig, ax = self.plt.subplots()
        d = df.boxplot(ax=ax, return_type="dict")
        lines = list(itertools.chain.from_iterable(d.values()))
        assert len(ax.get_lines()) == len(lines)
 
    def test_boxplot_return_type_none(self, hist_df):
        # GH 12216; return_type=None & by=None -> axes
        result = hist_df.boxplot()
        assert isinstance(result, self.plt.Axes)
 
    def test_boxplot_return_type_legacy(self):
        # API change in https://github.com/pandas-dev/pandas/pull/7096
 
        df = DataFrame(
            np.random.randn(6, 4),
            index=list(string.ascii_letters[:6]),
            columns=["one", "two", "three", "four"],
        )
        msg = "return_type must be {'axes', 'dict', 'both'}"
        with pytest.raises(ValueError, match=msg):
            df.boxplot(return_type="NOT_A_TYPE")
 
        result = df.boxplot()
        self._check_box_return_type(result, "axes")
 
        with tm.assert_produces_warning(False):
            result = df.boxplot(return_type="dict")
        self._check_box_return_type(result, "dict")
 
        with tm.assert_produces_warning(False):
            result = df.boxplot(return_type="axes")
        self._check_box_return_type(result, "axes")
 
        with tm.assert_produces_warning(False):
            result = df.boxplot(return_type="both")
        self._check_box_return_type(result, "both")
 
    def test_boxplot_axis_limits(self, hist_df):
        def _check_ax_limits(col, ax):
            y_min, y_max = ax.get_ylim()
            assert y_min <= col.min()
            assert y_max >= col.max()
 
        df = hist_df.copy()
        df["age"] = np.random.randint(1, 20, df.shape[0])
        # One full row
        height_ax, weight_ax = df.boxplot(["height", "weight"], by="category")
        _check_ax_limits(df["height"], height_ax)
        _check_ax_limits(df["weight"], weight_ax)
        assert weight_ax._sharey == height_ax
 
        # Two rows, one partial
        p = df.boxplot(["height", "weight", "age"], by="category")
        height_ax, weight_ax, age_ax = p[0, 0], p[0, 1], p[1, 0]
        dummy_ax = p[1, 1]
 
        _check_ax_limits(df["height"], height_ax)
        _check_ax_limits(df["weight"], weight_ax)
        _check_ax_limits(df["age"], age_ax)
        assert weight_ax._sharey == height_ax
        assert age_ax._sharey == height_ax
        assert dummy_ax._sharey is None
 
    def test_boxplot_empty_column(self):
        df = DataFrame(np.random.randn(20, 4))
        df.loc[:, 0] = np.nan
        _check_plot_works(df.boxplot, return_type="axes")
 
    def test_figsize(self):
        df = DataFrame(np.random.rand(10, 5), columns=["A", "B", "C", "D", "E"])
        result = df.boxplot(return_type="axes", figsize=(12, 8))
        assert result.figure.bbox_inches.width == 12
        assert result.figure.bbox_inches.height == 8
 
    def test_fontsize(self):
        df = DataFrame({"a": [1, 2, 3, 4, 5, 6]})
        self._check_ticks_props(
            df.boxplot("a", fontsize=16), xlabelsize=16, ylabelsize=16
        )
 
    def test_boxplot_numeric_data(self):
        # GH 22799
        df = DataFrame(
            {
                "a": date_range("2012-01-01", periods=100),
                "b": np.random.randn(100),
                "c": np.random.randn(100) + 2,
                "d": date_range("2012-01-01", periods=100).astype(str),
                "e": date_range("2012-01-01", periods=100, tz="UTC"),
                "f": timedelta_range("1 days", periods=100),
            }
        )
        ax = df.plot(kind="box")
        assert [x.get_text() for x in ax.get_xticklabels()] == ["b", "c"]
 
    @pytest.mark.parametrize(
        "colors_kwd, expected",
        [
            (
                {"boxes": "r", "whiskers": "b", "medians": "g", "caps": "c"},
                {"boxes": "r", "whiskers": "b", "medians": "g", "caps": "c"},
            ),
            ({"boxes": "r"}, {"boxes": "r"}),
            ("r", {"boxes": "r", "whiskers": "r", "medians": "r", "caps": "r"}),
        ],
    )
    def test_color_kwd(self, colors_kwd, expected):
        # GH: 26214
        df = DataFrame(np.random.rand(10, 2))
        result = df.boxplot(color=colors_kwd, return_type="dict")
        for k, v in expected.items():
            assert result[k][0].get_color() == v
 
    @pytest.mark.parametrize(
        "scheme,expected",
        [
            (
                "dark_background",
                {
                    "boxes": "#8dd3c7",
                    "whiskers": "#8dd3c7",
                    "medians": "#bfbbd9",
                    "caps": "#8dd3c7",
                },
            ),
            (
                "default",
                {
                    "boxes": "#1f77b4",
                    "whiskers": "#1f77b4",
                    "medians": "#2ca02c",
                    "caps": "#1f77b4",
                },
            ),
        ],
    )
    def test_colors_in_theme(self, scheme, expected):
        # GH: 40769
        df = DataFrame(np.random.rand(10, 2))
        import matplotlib.pyplot as plt
 
        plt.style.use(scheme)
        result = df.plot.box(return_type="dict")
        for k, v in expected.items():
            assert result[k][0].get_color() == v
 
    @pytest.mark.parametrize(
        "dict_colors, msg",
        [({"boxes": "r", "invalid_key": "r"}, "invalid key 'invalid_key'")],
    )
    def test_color_kwd_errors(self, dict_colors, msg):
        # GH: 26214
        df = DataFrame(np.random.rand(10, 2))
        with pytest.raises(ValueError, match=msg):
            df.boxplot(color=dict_colors, return_type="dict")
 
    @pytest.mark.parametrize(
        "props, expected",
        [
            ("boxprops", "boxes"),
            ("whiskerprops", "whiskers"),
            ("capprops", "caps"),
            ("medianprops", "medians"),
        ],
    )
    def test_specified_props_kwd(self, props, expected):
        # GH 30346
        df = DataFrame({k: np.random.random(100) for k in "ABC"})
        kwd = {props: {"color": "C1"}}
        result = df.boxplot(return_type="dict", **kwd)
 
        assert result[expected][0].get_color() == "C1"
 
    @pytest.mark.parametrize("vert", [True, False])
    def test_plot_xlabel_ylabel(self, vert):
        df = DataFrame(
            {
                "a": np.random.randn(100),
                "b": np.random.randn(100),
                "group": np.random.choice(["group1", "group2"], 100),
            }
        )
        xlabel, ylabel = "x", "y"
        ax = df.plot(kind="box", vert=vert, xlabel=xlabel, ylabel=ylabel)
        assert ax.get_xlabel() == xlabel
        assert ax.get_ylabel() == ylabel
 
    @pytest.mark.parametrize("vert", [True, False])
    def test_boxplot_xlabel_ylabel(self, vert):
        df = DataFrame(
            {
                "a": np.random.randn(100),
                "b": np.random.randn(100),
                "group": np.random.choice(["group1", "group2"], 100),
            }
        )
        xlabel, ylabel = "x", "y"
        ax = df.boxplot(vert=vert, xlabel=xlabel, ylabel=ylabel)
        assert ax.get_xlabel() == xlabel
        assert ax.get_ylabel() == ylabel
 
    @pytest.mark.parametrize("vert", [True, False])
    def test_boxplot_group_xlabel_ylabel(self, vert):
        df = DataFrame(
            {
                "a": np.random.randn(100),
                "b": np.random.randn(100),
                "group": np.random.choice(["group1", "group2"], 100),
            }
        )
        xlabel, ylabel = "x", "y"
        ax = df.boxplot(by="group", vert=vert, xlabel=xlabel, ylabel=ylabel)
        for subplot in ax:
            assert subplot.get_xlabel() == xlabel
            assert subplot.get_ylabel() == ylabel
        self.plt.close()
 
        ax = df.boxplot(by="group", vert=vert)
        for subplot in ax:
            target_label = subplot.get_xlabel() if vert else subplot.get_ylabel()
            assert target_label == pprint_thing(["group"])
        self.plt.close()
 
 
@td.skip_if_no_mpl
class TestDataFrameGroupByPlots(TestPlotBase):
    def test_boxplot_legacy1(self, hist_df):
        grouped = hist_df.groupby(by="gender")
        with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
            axes = _check_plot_works(grouped.boxplot, return_type="axes")
        self._check_axes_shape(list(axes.values), axes_num=2, layout=(1, 2))
        axes = _check_plot_works(grouped.boxplot, subplots=False, return_type="axes")
        self._check_axes_shape(axes, axes_num=1, layout=(1, 1))
 
    @pytest.mark.slow
    def test_boxplot_legacy2(self):
        tuples = zip(string.ascii_letters[:10], range(10))
        df = DataFrame(np.random.rand(10, 3), index=MultiIndex.from_tuples(tuples))
        grouped = df.groupby(level=1)
        with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
            axes = _check_plot_works(grouped.boxplot, return_type="axes")
        self._check_axes_shape(list(axes.values), axes_num=10, layout=(4, 3))
 
        axes = _check_plot_works(grouped.boxplot, subplots=False, return_type="axes")
        self._check_axes_shape(axes, axes_num=1, layout=(1, 1))
 
    def test_boxplot_legacy3(self):
        tuples = zip(string.ascii_letters[:10], range(10))
        df = DataFrame(np.random.rand(10, 3), index=MultiIndex.from_tuples(tuples))
        grouped = df.unstack(level=1).groupby(level=0, axis=1)
        with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
            axes = _check_plot_works(grouped.boxplot, return_type="axes")
        self._check_axes_shape(list(axes.values), axes_num=3, layout=(2, 2))
        axes = _check_plot_works(grouped.boxplot, subplots=False, return_type="axes")
        self._check_axes_shape(axes, axes_num=1, layout=(1, 1))
 
    def test_grouped_plot_fignums(self):
        n = 10
        weight = Series(np.random.normal(166, 20, size=n))
        height = Series(np.random.normal(60, 10, size=n))
        gender = np.random.RandomState(42).choice(["male", "female"], size=n)
        df = DataFrame({"height": height, "weight": weight, "gender": gender})
        gb = df.groupby("gender")
 
        res = gb.plot()
        assert len(self.plt.get_fignums()) == 2
        assert len(res) == 2
        tm.close()
 
        res = gb.boxplot(return_type="axes")
        assert len(self.plt.get_fignums()) == 1
        assert len(res) == 2
        tm.close()
 
        # now works with GH 5610 as gender is excluded
        res = df.groupby("gender").hist()
        tm.close()
 
    @pytest.mark.slow
    def test_grouped_box_return_type(self, hist_df):
        df = hist_df
 
        # old style: return_type=None
        result = df.boxplot(by="gender")
        assert isinstance(result, np.ndarray)
        self._check_box_return_type(
            result, None, expected_keys=["height", "weight", "category"]
        )
 
        # now for groupby
        result = df.groupby("gender").boxplot(return_type="dict")
        self._check_box_return_type(result, "dict", expected_keys=["Male", "Female"])
 
        columns2 = "X B C D A G Y N Q O".split()
        df2 = DataFrame(np.random.randn(50, 10), columns=columns2)
        categories2 = "A B C D E F G H I J".split()
        df2["category"] = categories2 * 5
 
        for t in ["dict", "axes", "both"]:
            returned = df.groupby("classroom").boxplot(return_type=t)
            self._check_box_return_type(returned, t, expected_keys=["A", "B", "C"])
 
            returned = df.boxplot(by="classroom", return_type=t)
            self._check_box_return_type(
                returned, t, expected_keys=["height", "weight", "category"]
            )
 
            returned = df2.groupby("category").boxplot(return_type=t)
            self._check_box_return_type(returned, t, expected_keys=categories2)
 
            returned = df2.boxplot(by="category", return_type=t)
            self._check_box_return_type(returned, t, expected_keys=columns2)
 
    @pytest.mark.slow
    def test_grouped_box_layout(self, hist_df):
        df = hist_df
 
        msg = "Layout of 1x1 must be larger than required size 2"
        with pytest.raises(ValueError, match=msg):
            df.boxplot(column=["weight", "height"], by=df.gender, layout=(1, 1))
 
        msg = "The 'layout' keyword is not supported when 'by' is None"
        with pytest.raises(ValueError, match=msg):
            df.boxplot(
                column=["height", "weight", "category"],
                layout=(2, 1),
                return_type="dict",
            )
 
        msg = "At least one dimension of layout must be positive"
        with pytest.raises(ValueError, match=msg):
            df.boxplot(column=["weight", "height"], by=df.gender, layout=(-1, -1))
 
        # _check_plot_works adds an ax so catch warning. see GH #13188
        with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
            box = _check_plot_works(
                df.groupby("gender").boxplot, column="height", return_type="dict"
            )
        self._check_axes_shape(self.plt.gcf().axes, axes_num=2, layout=(1, 2))
 
        with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
            box = _check_plot_works(
                df.groupby("category").boxplot, column="height", return_type="dict"
            )
        self._check_axes_shape(self.plt.gcf().axes, axes_num=4, layout=(2, 2))
 
        # GH 6769
        with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
            box = _check_plot_works(
                df.groupby("classroom").boxplot, column="height", return_type="dict"
            )
        self._check_axes_shape(self.plt.gcf().axes, axes_num=3, layout=(2, 2))
 
        # GH 5897
        axes = df.boxplot(
            column=["height", "weight", "category"], by="gender", return_type="axes"
        )
        self._check_axes_shape(self.plt.gcf().axes, axes_num=3, layout=(2, 2))
        for ax in [axes["height"]]:
            self._check_visible(ax.get_xticklabels(), visible=False)
            self._check_visible([ax.xaxis.get_label()], visible=False)
        for ax in [axes["weight"], axes["category"]]:
            self._check_visible(ax.get_xticklabels())
            self._check_visible([ax.xaxis.get_label()])
 
        box = df.groupby("classroom").boxplot(
            column=["height", "weight", "category"], return_type="dict"
        )
        self._check_axes_shape(self.plt.gcf().axes, axes_num=3, layout=(2, 2))
 
        with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
            box = _check_plot_works(
                df.groupby("category").boxplot,
                column="height",
                layout=(3, 2),
                return_type="dict",
            )
        self._check_axes_shape(self.plt.gcf().axes, axes_num=4, layout=(3, 2))
        with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
            box = _check_plot_works(
                df.groupby("category").boxplot,
                column="height",
                layout=(3, -1),
                return_type="dict",
            )
        self._check_axes_shape(self.plt.gcf().axes, axes_num=4, layout=(3, 2))
 
        box = df.boxplot(
            column=["height", "weight", "category"], by="gender", layout=(4, 1)
        )
        self._check_axes_shape(self.plt.gcf().axes, axes_num=3, layout=(4, 1))
 
        box = df.boxplot(
            column=["height", "weight", "category"], by="gender", layout=(-1, 1)
        )
        self._check_axes_shape(self.plt.gcf().axes, axes_num=3, layout=(3, 1))
 
        box = df.groupby("classroom").boxplot(
            column=["height", "weight", "category"], layout=(1, 4), return_type="dict"
        )
        self._check_axes_shape(self.plt.gcf().axes, axes_num=3, layout=(1, 4))
 
        box = df.groupby("classroom").boxplot(  # noqa
            column=["height", "weight", "category"], layout=(1, -1), return_type="dict"
        )
        self._check_axes_shape(self.plt.gcf().axes, axes_num=3, layout=(1, 3))
 
    @pytest.mark.slow
    def test_grouped_box_multiple_axes(self, hist_df):
        # GH 6970, GH 7069
        df = hist_df
 
        # check warning to ignore sharex / sharey
        # this check should be done in the first function which
        # passes multiple axes to plot, hist or boxplot
        # location should be changed if other test is added
        # which has earlier alphabetical order
        with tm.assert_produces_warning(UserWarning):
            fig, axes = self.plt.subplots(2, 2)
            df.groupby("category").boxplot(column="height", return_type="axes", ax=axes)
            self._check_axes_shape(self.plt.gcf().axes, axes_num=4, layout=(2, 2))
 
        fig, axes = self.plt.subplots(2, 3)
        with tm.assert_produces_warning(UserWarning):
            returned = df.boxplot(
                column=["height", "weight", "category"],
                by="gender",
                return_type="axes",
                ax=axes[0],
            )
        returned = np.array(list(returned.values))
        self._check_axes_shape(returned, axes_num=3, layout=(1, 3))
        tm.assert_numpy_array_equal(returned, axes[0])
        assert returned[0].figure is fig
 
        # draw on second row
        with tm.assert_produces_warning(UserWarning):
            returned = df.groupby("classroom").boxplot(
                column=["height", "weight", "category"], return_type="axes", ax=axes[1]
            )
        returned = np.array(list(returned.values))
        self._check_axes_shape(returned, axes_num=3, layout=(1, 3))
        tm.assert_numpy_array_equal(returned, axes[1])
        assert returned[0].figure is fig
 
        msg = "The number of passed axes must be 3, the same as the output plot"
        with pytest.raises(ValueError, match=msg):
            fig, axes = self.plt.subplots(2, 3)
            # pass different number of axes from required
            with tm.assert_produces_warning(UserWarning):
                axes = df.groupby("classroom").boxplot(ax=axes)
 
    def test_fontsize(self):
        df = DataFrame({"a": [1, 2, 3, 4, 5, 6], "b": [0, 0, 0, 1, 1, 1]})
        self._check_ticks_props(
            df.boxplot("a", by="b", fontsize=16), xlabelsize=16, ylabelsize=16
        )
 
    @pytest.mark.parametrize(
        "col, expected_xticklabel",
        [
            ("v", ["(a, v)", "(b, v)", "(c, v)", "(d, v)", "(e, v)"]),
            (["v"], ["(a, v)", "(b, v)", "(c, v)", "(d, v)", "(e, v)"]),
            ("v1", ["(a, v1)", "(b, v1)", "(c, v1)", "(d, v1)", "(e, v1)"]),
            (
                ["v", "v1"],
                [
                    "(a, v)",
                    "(a, v1)",
                    "(b, v)",
                    "(b, v1)",
                    "(c, v)",
                    "(c, v1)",
                    "(d, v)",
                    "(d, v1)",
                    "(e, v)",
                    "(e, v1)",
                ],
            ),
            (
                None,
                [
                    "(a, v)",
                    "(a, v1)",
                    "(b, v)",
                    "(b, v1)",
                    "(c, v)",
                    "(c, v1)",
                    "(d, v)",
                    "(d, v1)",
                    "(e, v)",
                    "(e, v1)",
                ],
            ),
        ],
    )
    def test_groupby_boxplot_subplots_false(self, col, expected_xticklabel):
        # GH 16748
        df = DataFrame(
            {
                "cat": np.random.choice(list("abcde"), 100),
                "v": np.random.rand(100),
                "v1": np.random.rand(100),
            }
        )
        grouped = df.groupby("cat")
 
        axes = _check_plot_works(
            grouped.boxplot, subplots=False, column=col, return_type="axes"
        )
 
        result_xticklabel = [x.get_text() for x in axes.get_xticklabels()]
        assert expected_xticklabel == result_xticklabel
 
    def test_groupby_boxplot_object(self, hist_df):
        # GH 43480
        df = hist_df.astype("object")
        grouped = df.groupby("gender")
        msg = "boxplot method requires numerical columns, nothing to plot"
        with pytest.raises(ValueError, match=msg):
            _check_plot_works(grouped.boxplot, subplots=False)
 
    def test_boxplot_multiindex_column(self):
        # GH 16748
        arrays = [
            ["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"],
            ["one", "two", "one", "two", "one", "two", "one", "two"],
        ]
        tuples = list(zip(*arrays))
        index = MultiIndex.from_tuples(tuples, names=["first", "second"])
        df = DataFrame(np.random.randn(3, 8), index=["A", "B", "C"], columns=index)
 
        col = [("bar", "one"), ("bar", "two")]
        axes = _check_plot_works(df.boxplot, column=col, return_type="axes")
 
        expected_xticklabel = ["(bar, one)", "(bar, two)"]
        result_xticklabel = [x.get_text() for x in axes.get_xticklabels()]
        assert expected_xticklabel == result_xticklabel