zmc
2023-10-12 ed135d79df12a2466b52dae1a82326941211dcc9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
"""
Tests that duplicate columns are handled appropriately when parsed by the
CSV engine. In general, the expected result is that they are either thoroughly
de-duplicated (if mangling requested) or ignored otherwise.
"""
from io import StringIO
 
import pytest
 
from pandas import DataFrame
import pandas._testing as tm
 
skip_pyarrow = pytest.mark.usefixtures("pyarrow_skip")
 
 
@skip_pyarrow
def test_basic(all_parsers):
    parser = all_parsers
 
    data = "a,a,b,b,b\n1,2,3,4,5"
    result = parser.read_csv(StringIO(data), sep=",")
 
    expected = DataFrame([[1, 2, 3, 4, 5]], columns=["a", "a.1", "b", "b.1", "b.2"])
    tm.assert_frame_equal(result, expected)
 
 
@skip_pyarrow
def test_basic_names(all_parsers):
    # See gh-7160
    parser = all_parsers
 
    data = "a,b,a\n0,1,2\n3,4,5"
    expected = DataFrame([[0, 1, 2], [3, 4, 5]], columns=["a", "b", "a.1"])
 
    result = parser.read_csv(StringIO(data))
    tm.assert_frame_equal(result, expected)
 
 
def test_basic_names_raise(all_parsers):
    # See gh-7160
    parser = all_parsers
 
    data = "0,1,2\n3,4,5"
    with pytest.raises(ValueError, match="Duplicate names"):
        parser.read_csv(StringIO(data), names=["a", "b", "a"])
 
 
@skip_pyarrow
@pytest.mark.parametrize(
    "data,expected",
    [
        ("a,a,a.1\n1,2,3", DataFrame([[1, 2, 3]], columns=["a", "a.2", "a.1"])),
        (
            "a,a,a.1,a.1.1,a.1.1.1,a.1.1.1.1\n1,2,3,4,5,6",
            DataFrame(
                [[1, 2, 3, 4, 5, 6]],
                columns=["a", "a.2", "a.1", "a.1.1", "a.1.1.1", "a.1.1.1.1"],
            ),
        ),
        (
            "a,a,a.3,a.1,a.2,a,a\n1,2,3,4,5,6,7",
            DataFrame(
                [[1, 2, 3, 4, 5, 6, 7]],
                columns=["a", "a.4", "a.3", "a.1", "a.2", "a.5", "a.6"],
            ),
        ),
    ],
)
def test_thorough_mangle_columns(all_parsers, data, expected):
    # see gh-17060
    parser = all_parsers
 
    result = parser.read_csv(StringIO(data))
    tm.assert_frame_equal(result, expected)
 
 
@skip_pyarrow
@pytest.mark.parametrize(
    "data,names,expected",
    [
        (
            "a,b,b\n1,2,3",
            ["a.1", "a.1", "a.1.1"],
            DataFrame(
                [["a", "b", "b"], ["1", "2", "3"]], columns=["a.1", "a.1.1", "a.1.1.1"]
            ),
        ),
        (
            "a,b,c,d,e,f\n1,2,3,4,5,6",
            ["a", "a", "a.1", "a.1.1", "a.1.1.1", "a.1.1.1.1"],
            DataFrame(
                [["a", "b", "c", "d", "e", "f"], ["1", "2", "3", "4", "5", "6"]],
                columns=["a", "a.1", "a.1.1", "a.1.1.1", "a.1.1.1.1", "a.1.1.1.1.1"],
            ),
        ),
        (
            "a,b,c,d,e,f,g\n1,2,3,4,5,6,7",
            ["a", "a", "a.3", "a.1", "a.2", "a", "a"],
            DataFrame(
                [
                    ["a", "b", "c", "d", "e", "f", "g"],
                    ["1", "2", "3", "4", "5", "6", "7"],
                ],
                columns=["a", "a.1", "a.3", "a.1.1", "a.2", "a.2.1", "a.3.1"],
            ),
        ),
    ],
)
def test_thorough_mangle_names(all_parsers, data, names, expected):
    # see gh-17095
    parser = all_parsers
 
    with pytest.raises(ValueError, match="Duplicate names"):
        parser.read_csv(StringIO(data), names=names)
 
 
@skip_pyarrow
def test_mangled_unnamed_placeholders(all_parsers):
    # xref gh-13017
    orig_key = "0"
    parser = all_parsers
 
    orig_value = [1, 2, 3]
    df = DataFrame({orig_key: orig_value})
 
    # This test recursively updates `df`.
    for i in range(3):
        expected = DataFrame()
 
        for j in range(i + 1):
            col_name = "Unnamed: 0" + f".{1*j}" * min(j, 1)
            expected.insert(loc=0, column=col_name, value=[0, 1, 2])
 
        expected[orig_key] = orig_value
        df = parser.read_csv(StringIO(df.to_csv()))
 
        tm.assert_frame_equal(df, expected)
 
 
@skip_pyarrow
def test_mangle_dupe_cols_already_exists(all_parsers):
    # GH#14704
    parser = all_parsers
 
    data = "a,a,a.1,a,a.3,a.1,a.1.1\n1,2,3,4,5,6,7"
    result = parser.read_csv(StringIO(data))
    expected = DataFrame(
        [[1, 2, 3, 4, 5, 6, 7]],
        columns=["a", "a.2", "a.1", "a.4", "a.3", "a.1.2", "a.1.1"],
    )
    tm.assert_frame_equal(result, expected)
 
 
@skip_pyarrow
def test_mangle_dupe_cols_already_exists_unnamed_col(all_parsers):
    # GH#14704
    parser = all_parsers
 
    data = ",Unnamed: 0,,Unnamed: 2\n1,2,3,4"
    result = parser.read_csv(StringIO(data))
    expected = DataFrame(
        [[1, 2, 3, 4]],
        columns=["Unnamed: 0.1", "Unnamed: 0", "Unnamed: 2.1", "Unnamed: 2"],
    )
    tm.assert_frame_equal(result, expected)