1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
| """
| Tests that the specified index column (a.k.a "index_col")
| is properly handled or inferred during parsing for all of
| the parsers defined in parsers.py
| """
| from io import StringIO
|
| import numpy as np
| import pytest
|
| from pandas import (
| DataFrame,
| Index,
| MultiIndex,
| )
| import pandas._testing as tm
|
| # TODO(1.4): Change me to xfails at release time
| skip_pyarrow = pytest.mark.usefixtures("pyarrow_skip")
|
|
| @pytest.mark.parametrize("with_header", [True, False])
| def test_index_col_named(all_parsers, with_header):
| parser = all_parsers
| no_header = """\
| KORD1,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000
| KORD2,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000
| KORD3,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000
| KORD4,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000
| KORD5,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000
| KORD6,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000"""
| header = "ID,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir\n"
|
| if with_header:
| data = header + no_header
|
| result = parser.read_csv(StringIO(data), index_col="ID")
| expected = parser.read_csv(StringIO(data), header=0).set_index("ID")
| tm.assert_frame_equal(result, expected)
| else:
| data = no_header
| msg = "Index ID invalid"
|
| with pytest.raises(ValueError, match=msg):
| parser.read_csv(StringIO(data), index_col="ID")
|
|
| def test_index_col_named2(all_parsers):
| parser = all_parsers
| data = """\
| 1,2,3,4,hello
| 5,6,7,8,world
| 9,10,11,12,foo
| """
|
| expected = DataFrame(
| {"a": [1, 5, 9], "b": [2, 6, 10], "c": [3, 7, 11], "d": [4, 8, 12]},
| index=Index(["hello", "world", "foo"], name="message"),
| )
| names = ["a", "b", "c", "d", "message"]
|
| result = parser.read_csv(StringIO(data), names=names, index_col=["message"])
| tm.assert_frame_equal(result, expected)
|
|
| def test_index_col_is_true(all_parsers):
| # see gh-9798
| data = "a,b\n1,2"
| parser = all_parsers
|
| msg = "The value of index_col couldn't be 'True'"
| with pytest.raises(ValueError, match=msg):
| parser.read_csv(StringIO(data), index_col=True)
|
|
| @skip_pyarrow
| def test_infer_index_col(all_parsers):
| data = """A,B,C
| foo,1,2,3
| bar,4,5,6
| baz,7,8,9
| """
| parser = all_parsers
| result = parser.read_csv(StringIO(data))
|
| expected = DataFrame(
| [[1, 2, 3], [4, 5, 6], [7, 8, 9]],
| index=["foo", "bar", "baz"],
| columns=["A", "B", "C"],
| )
| tm.assert_frame_equal(result, expected)
|
|
| @skip_pyarrow
| @pytest.mark.parametrize(
| "index_col,kwargs",
| [
| (None, {"columns": ["x", "y", "z"]}),
| (False, {"columns": ["x", "y", "z"]}),
| (0, {"columns": ["y", "z"], "index": Index([], name="x")}),
| (1, {"columns": ["x", "z"], "index": Index([], name="y")}),
| ("x", {"columns": ["y", "z"], "index": Index([], name="x")}),
| ("y", {"columns": ["x", "z"], "index": Index([], name="y")}),
| (
| [0, 1],
| {
| "columns": ["z"],
| "index": MultiIndex.from_arrays([[]] * 2, names=["x", "y"]),
| },
| ),
| (
| ["x", "y"],
| {
| "columns": ["z"],
| "index": MultiIndex.from_arrays([[]] * 2, names=["x", "y"]),
| },
| ),
| (
| [1, 0],
| {
| "columns": ["z"],
| "index": MultiIndex.from_arrays([[]] * 2, names=["y", "x"]),
| },
| ),
| (
| ["y", "x"],
| {
| "columns": ["z"],
| "index": MultiIndex.from_arrays([[]] * 2, names=["y", "x"]),
| },
| ),
| ],
| )
| def test_index_col_empty_data(all_parsers, index_col, kwargs):
| data = "x,y,z"
| parser = all_parsers
| result = parser.read_csv(StringIO(data), index_col=index_col)
|
| expected = DataFrame(**kwargs)
| tm.assert_frame_equal(result, expected)
|
|
| @skip_pyarrow
| def test_empty_with_index_col_false(all_parsers):
| # see gh-10413
| data = "x,y"
| parser = all_parsers
| result = parser.read_csv(StringIO(data), index_col=False)
|
| expected = DataFrame(columns=["x", "y"])
| tm.assert_frame_equal(result, expected)
|
|
| @skip_pyarrow
| @pytest.mark.parametrize(
| "index_names",
| [
| ["", ""],
| ["foo", ""],
| ["", "bar"],
| ["foo", "bar"],
| ["NotReallyUnnamed", "Unnamed: 0"],
| ],
| )
| def test_multi_index_naming(all_parsers, index_names):
| parser = all_parsers
|
| # We don't want empty index names being replaced with "Unnamed: 0"
| data = ",".join(index_names + ["col\na,c,1\na,d,2\nb,c,3\nb,d,4"])
| result = parser.read_csv(StringIO(data), index_col=[0, 1])
|
| expected = DataFrame(
| {"col": [1, 2, 3, 4]}, index=MultiIndex.from_product([["a", "b"], ["c", "d"]])
| )
| expected.index.names = [name if name else None for name in index_names]
| tm.assert_frame_equal(result, expected)
|
|
| @skip_pyarrow
| def test_multi_index_naming_not_all_at_beginning(all_parsers):
| parser = all_parsers
| data = ",Unnamed: 2,\na,c,1\na,d,2\nb,c,3\nb,d,4"
| result = parser.read_csv(StringIO(data), index_col=[0, 2])
|
| expected = DataFrame(
| {"Unnamed: 2": ["c", "d", "c", "d"]},
| index=MultiIndex(
| levels=[["a", "b"], [1, 2, 3, 4]], codes=[[0, 0, 1, 1], [0, 1, 2, 3]]
| ),
| )
| tm.assert_frame_equal(result, expected)
|
|
| @skip_pyarrow
| def test_no_multi_index_level_names_empty(all_parsers):
| # GH 10984
| parser = all_parsers
| midx = MultiIndex.from_tuples([("A", 1, 2), ("A", 1, 2), ("B", 1, 2)])
| expected = DataFrame(np.random.randn(3, 3), index=midx, columns=["x", "y", "z"])
| with tm.ensure_clean() as path:
| expected.to_csv(path)
| result = parser.read_csv(path, index_col=[0, 1, 2])
| tm.assert_frame_equal(result, expected)
|
|
| @skip_pyarrow
| def test_header_with_index_col(all_parsers):
| # GH 33476
| parser = all_parsers
| data = """
| I11,A,A
| I12,B,B
| I2,1,3
| """
| midx = MultiIndex.from_tuples([("A", "B"), ("A", "B.1")], names=["I11", "I12"])
| idx = Index(["I2"])
| expected = DataFrame([[1, 3]], index=idx, columns=midx)
|
| result = parser.read_csv(StringIO(data), index_col=0, header=[0, 1])
| tm.assert_frame_equal(result, expected)
|
| col_idx = Index(["A", "A.1"])
| idx = Index(["I12", "I2"], name="I11")
| expected = DataFrame([["B", "B"], ["1", "3"]], index=idx, columns=col_idx)
|
| result = parser.read_csv(StringIO(data), index_col="I11", header=0)
| tm.assert_frame_equal(result, expected)
|
|
| @pytest.mark.slow
| def test_index_col_large_csv(all_parsers):
| # https://github.com/pandas-dev/pandas/issues/37094
| parser = all_parsers
|
| N = 1_000_001
| df = DataFrame({"a": range(N), "b": np.random.randn(N)})
|
| with tm.ensure_clean() as path:
| df.to_csv(path, index=False)
| result = parser.read_csv(path, index_col=[0])
|
| tm.assert_frame_equal(result, df.set_index("a"))
|
|
| @skip_pyarrow
| def test_index_col_multiindex_columns_no_data(all_parsers):
| # GH#38292
| parser = all_parsers
| result = parser.read_csv(
| StringIO("a0,a1,a2\nb0,b1,b2\n"), header=[0, 1], index_col=0
| )
| expected = DataFrame(
| [],
| index=Index([]),
| columns=MultiIndex.from_arrays(
| [["a1", "a2"], ["b1", "b2"]], names=["a0", "b0"]
| ),
| )
| tm.assert_frame_equal(result, expected)
|
|
| @skip_pyarrow
| def test_index_col_header_no_data(all_parsers):
| # GH#38292
| parser = all_parsers
| result = parser.read_csv(StringIO("a0,a1,a2\n"), header=[0], index_col=0)
| expected = DataFrame(
| [],
| columns=["a1", "a2"],
| index=Index([], name="a0"),
| )
| tm.assert_frame_equal(result, expected)
|
|
| @skip_pyarrow
| def test_multiindex_columns_no_data(all_parsers):
| # GH#38292
| parser = all_parsers
| result = parser.read_csv(StringIO("a0,a1,a2\nb0,b1,b2\n"), header=[0, 1])
| expected = DataFrame(
| [], columns=MultiIndex.from_arrays([["a0", "a1", "a2"], ["b0", "b1", "b2"]])
| )
| tm.assert_frame_equal(result, expected)
|
|
| @skip_pyarrow
| def test_multiindex_columns_index_col_with_data(all_parsers):
| # GH#38292
| parser = all_parsers
| result = parser.read_csv(
| StringIO("a0,a1,a2\nb0,b1,b2\ndata,data,data"), header=[0, 1], index_col=0
| )
| expected = DataFrame(
| [["data", "data"]],
| columns=MultiIndex.from_arrays(
| [["a1", "a2"], ["b1", "b2"]], names=["a0", "b0"]
| ),
| index=Index(["data"]),
| )
| tm.assert_frame_equal(result, expected)
|
|
| @skip_pyarrow
| def test_infer_types_boolean_sum(all_parsers):
| # GH#44079
| parser = all_parsers
| result = parser.read_csv(
| StringIO("0,1"),
| names=["a", "b"],
| index_col=["a"],
| dtype={"a": "UInt8"},
| )
| expected = DataFrame(
| data={
| "a": [
| 0,
| ],
| "b": [1],
| }
| ).set_index("a")
| # Not checking index type now, because the C parser will return a
| # index column of dtype 'object', and the Python parser will return a
| # index column of dtype 'int64'.
| tm.assert_frame_equal(result, expected, check_index_type=False)
|
|
| @skip_pyarrow
| @pytest.mark.parametrize("dtype, val", [(object, "01"), ("int64", 1)])
| def test_specify_dtype_for_index_col(all_parsers, dtype, val):
| # GH#9435
| data = "a,b\n01,2"
| parser = all_parsers
| result = parser.read_csv(StringIO(data), index_col="a", dtype={"a": dtype})
| expected = DataFrame({"b": [2]}, index=Index([val], name="a"))
| tm.assert_frame_equal(result, expected)
|
|
| @skip_pyarrow
| def test_multiindex_columns_not_leading_index_col(all_parsers):
| # GH#38549
| parser = all_parsers
| data = """a,b,c,d
| e,f,g,h
| x,y,1,2
| """
| result = parser.read_csv(
| StringIO(data),
| header=[0, 1],
| index_col=1,
| )
| cols = MultiIndex.from_tuples(
| [("a", "e"), ("c", "g"), ("d", "h")], names=["b", "f"]
| )
| expected = DataFrame([["x", 1, 2]], columns=cols, index=["y"])
| tm.assert_frame_equal(result, expected)
|
|