1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
| import numpy as np
| import pytest
|
| import pandas as pd
| from pandas import (
| DataFrame,
| MultiIndex,
| Series,
| )
| import pandas._testing as tm
|
|
| class TestDataFrameIsIn:
| def test_isin(self):
| # GH#4211
| df = DataFrame(
| {
| "vals": [1, 2, 3, 4],
| "ids": ["a", "b", "f", "n"],
| "ids2": ["a", "n", "c", "n"],
| },
| index=["foo", "bar", "baz", "qux"],
| )
| other = ["a", "b", "c"]
|
| result = df.isin(other)
| expected = DataFrame([df.loc[s].isin(other) for s in df.index])
| tm.assert_frame_equal(result, expected)
|
| @pytest.mark.parametrize("empty", [[], Series(dtype=object), np.array([])])
| def test_isin_empty(self, empty):
| # GH#16991
| df = DataFrame({"A": ["a", "b", "c"], "B": ["a", "e", "f"]})
| expected = DataFrame(False, df.index, df.columns)
|
| result = df.isin(empty)
| tm.assert_frame_equal(result, expected)
|
| def test_isin_dict(self):
| df = DataFrame({"A": ["a", "b", "c"], "B": ["a", "e", "f"]})
| d = {"A": ["a"]}
|
| expected = DataFrame(False, df.index, df.columns)
| expected.loc[0, "A"] = True
|
| result = df.isin(d)
| tm.assert_frame_equal(result, expected)
|
| # non unique columns
| df = DataFrame({"A": ["a", "b", "c"], "B": ["a", "e", "f"]})
| df.columns = ["A", "A"]
| expected = DataFrame(False, df.index, df.columns)
| expected.loc[0, "A"] = True
| result = df.isin(d)
| tm.assert_frame_equal(result, expected)
|
| def test_isin_with_string_scalar(self):
| # GH#4763
| df = DataFrame(
| {
| "vals": [1, 2, 3, 4],
| "ids": ["a", "b", "f", "n"],
| "ids2": ["a", "n", "c", "n"],
| },
| index=["foo", "bar", "baz", "qux"],
| )
| msg = (
| r"only list-like or dict-like objects are allowed "
| r"to be passed to DataFrame.isin\(\), you passed a 'str'"
| )
| with pytest.raises(TypeError, match=msg):
| df.isin("a")
|
| with pytest.raises(TypeError, match=msg):
| df.isin("aaa")
|
| def test_isin_df(self):
| df1 = DataFrame({"A": [1, 2, 3, 4], "B": [2, np.nan, 4, 4]})
| df2 = DataFrame({"A": [0, 2, 12, 4], "B": [2, np.nan, 4, 5]})
| expected = DataFrame(False, df1.index, df1.columns)
| result = df1.isin(df2)
| expected.loc[[1, 3], "A"] = True
| expected.loc[[0, 2], "B"] = True
| tm.assert_frame_equal(result, expected)
|
| # partial overlapping columns
| df2.columns = ["A", "C"]
| result = df1.isin(df2)
| expected["B"] = False
| tm.assert_frame_equal(result, expected)
|
| def test_isin_tuples(self):
| # GH#16394
| df = DataFrame({"A": [1, 2, 3], "B": ["a", "b", "f"]})
| df["C"] = list(zip(df["A"], df["B"]))
| result = df["C"].isin([(1, "a")])
| tm.assert_series_equal(result, Series([True, False, False], name="C"))
|
| def test_isin_df_dupe_values(self):
| df1 = DataFrame({"A": [1, 2, 3, 4], "B": [2, np.nan, 4, 4]})
| # just cols duped
| df2 = DataFrame([[0, 2], [12, 4], [2, np.nan], [4, 5]], columns=["B", "B"])
| msg = r"cannot compute isin with a duplicate axis\."
| with pytest.raises(ValueError, match=msg):
| df1.isin(df2)
|
| # just index duped
| df2 = DataFrame(
| [[0, 2], [12, 4], [2, np.nan], [4, 5]],
| columns=["A", "B"],
| index=[0, 0, 1, 1],
| )
| with pytest.raises(ValueError, match=msg):
| df1.isin(df2)
|
| # cols and index:
| df2.columns = ["B", "B"]
| with pytest.raises(ValueError, match=msg):
| df1.isin(df2)
|
| def test_isin_dupe_self(self):
| other = DataFrame({"A": [1, 0, 1, 0], "B": [1, 1, 0, 0]})
| df = DataFrame([[1, 1], [1, 0], [0, 0]], columns=["A", "A"])
| result = df.isin(other)
| expected = DataFrame(False, index=df.index, columns=df.columns)
| expected.loc[0] = True
| expected.iloc[1, 1] = True
| tm.assert_frame_equal(result, expected)
|
| def test_isin_against_series(self):
| df = DataFrame(
| {"A": [1, 2, 3, 4], "B": [2, np.nan, 4, 4]}, index=["a", "b", "c", "d"]
| )
| s = Series([1, 3, 11, 4], index=["a", "b", "c", "d"])
| expected = DataFrame(False, index=df.index, columns=df.columns)
| expected.loc["a", "A"] = True
| expected.loc["d"] = True
| result = df.isin(s)
| tm.assert_frame_equal(result, expected)
|
| def test_isin_multiIndex(self):
| idx = MultiIndex.from_tuples(
| [
| (0, "a", "foo"),
| (0, "a", "bar"),
| (0, "b", "bar"),
| (0, "b", "baz"),
| (2, "a", "foo"),
| (2, "a", "bar"),
| (2, "c", "bar"),
| (2, "c", "baz"),
| (1, "b", "foo"),
| (1, "b", "bar"),
| (1, "c", "bar"),
| (1, "c", "baz"),
| ]
| )
| df1 = DataFrame({"A": np.ones(12), "B": np.zeros(12)}, index=idx)
| df2 = DataFrame(
| {
| "A": [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1],
| "B": [1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1],
| }
| )
| # against regular index
| expected = DataFrame(False, index=df1.index, columns=df1.columns)
| result = df1.isin(df2)
| tm.assert_frame_equal(result, expected)
|
| df2.index = idx
| expected = df2.values.astype(bool)
| expected[:, 1] = ~expected[:, 1]
| expected = DataFrame(expected, columns=["A", "B"], index=idx)
|
| result = df1.isin(df2)
| tm.assert_frame_equal(result, expected)
|
| def test_isin_empty_datetimelike(self):
| # GH#15473
| df1_ts = DataFrame({"date": pd.to_datetime(["2014-01-01", "2014-01-02"])})
| df1_td = DataFrame({"date": [pd.Timedelta(1, "s"), pd.Timedelta(2, "s")]})
| df2 = DataFrame({"date": []})
| df3 = DataFrame()
|
| expected = DataFrame({"date": [False, False]})
|
| result = df1_ts.isin(df2)
| tm.assert_frame_equal(result, expected)
| result = df1_ts.isin(df3)
| tm.assert_frame_equal(result, expected)
|
| result = df1_td.isin(df2)
| tm.assert_frame_equal(result, expected)
| result = df1_td.isin(df3)
| tm.assert_frame_equal(result, expected)
|
| @pytest.mark.parametrize(
| "values",
| [
| DataFrame({"a": [1, 2, 3]}, dtype="category"),
| Series([1, 2, 3], dtype="category"),
| ],
| )
| def test_isin_category_frame(self, values):
| # GH#34256
| df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
| expected = DataFrame({"a": [True, True, True], "b": [False, False, False]})
|
| result = df.isin(values)
| tm.assert_frame_equal(result, expected)
|
| def test_isin_read_only(self):
| # https://github.com/pandas-dev/pandas/issues/37174
| arr = np.array([1, 2, 3])
| arr.setflags(write=False)
| df = DataFrame([1, 2, 3])
| result = df.isin(arr)
| expected = DataFrame([True, True, True])
| tm.assert_frame_equal(result, expected)
|
|