zmc
2023-10-12 ed135d79df12a2466b52dae1a82326941211dcc9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import numpy as np
import pytest
 
import pandas as pd
from pandas import DataFrame
import pandas._testing as tm
 
 
class TestDataFrameFilter:
    def test_filter(self, float_frame, float_string_frame):
        # Items
        filtered = float_frame.filter(["A", "B", "E"])
        assert len(filtered.columns) == 2
        assert "E" not in filtered
 
        filtered = float_frame.filter(["A", "B", "E"], axis="columns")
        assert len(filtered.columns) == 2
        assert "E" not in filtered
 
        # Other axis
        idx = float_frame.index[0:4]
        filtered = float_frame.filter(idx, axis="index")
        expected = float_frame.reindex(index=idx)
        tm.assert_frame_equal(filtered, expected)
 
        # like
        fcopy = float_frame.copy()
        fcopy["AA"] = 1
 
        filtered = fcopy.filter(like="A")
        assert len(filtered.columns) == 2
        assert "AA" in filtered
 
        # like with ints in column names
        df = DataFrame(0.0, index=[0, 1, 2], columns=[0, 1, "_A", "_B"])
        filtered = df.filter(like="_")
        assert len(filtered.columns) == 2
 
        # regex with ints in column names
        # from PR #10384
        df = DataFrame(0.0, index=[0, 1, 2], columns=["A1", 1, "B", 2, "C"])
        expected = DataFrame(
            0.0, index=[0, 1, 2], columns=pd.Index([1, 2], dtype=object)
        )
        filtered = df.filter(regex="^[0-9]+$")
        tm.assert_frame_equal(filtered, expected)
 
        expected = DataFrame(0.0, index=[0, 1, 2], columns=[0, "0", 1, "1"])
        # shouldn't remove anything
        filtered = expected.filter(regex="^[0-9]+$")
        tm.assert_frame_equal(filtered, expected)
 
        # pass in None
        with pytest.raises(TypeError, match="Must pass"):
            float_frame.filter()
        with pytest.raises(TypeError, match="Must pass"):
            float_frame.filter(items=None)
        with pytest.raises(TypeError, match="Must pass"):
            float_frame.filter(axis=1)
 
        # test mutually exclusive arguments
        with pytest.raises(TypeError, match="mutually exclusive"):
            float_frame.filter(items=["one", "three"], regex="e$", like="bbi")
        with pytest.raises(TypeError, match="mutually exclusive"):
            float_frame.filter(items=["one", "three"], regex="e$", axis=1)
        with pytest.raises(TypeError, match="mutually exclusive"):
            float_frame.filter(items=["one", "three"], regex="e$")
        with pytest.raises(TypeError, match="mutually exclusive"):
            float_frame.filter(items=["one", "three"], like="bbi", axis=0)
        with pytest.raises(TypeError, match="mutually exclusive"):
            float_frame.filter(items=["one", "three"], like="bbi")
 
        # objects
        filtered = float_string_frame.filter(like="foo")
        assert "foo" in filtered
 
        # unicode columns, won't ascii-encode
        df = float_frame.rename(columns={"B": "\u2202"})
        filtered = df.filter(like="C")
        assert "C" in filtered
 
    def test_filter_regex_search(self, float_frame):
        fcopy = float_frame.copy()
        fcopy["AA"] = 1
 
        # regex
        filtered = fcopy.filter(regex="[A]+")
        assert len(filtered.columns) == 2
        assert "AA" in filtered
 
        # doesn't have to be at beginning
        df = DataFrame(
            {"aBBa": [1, 2], "BBaBB": [1, 2], "aCCa": [1, 2], "aCCaBB": [1, 2]}
        )
 
        result = df.filter(regex="BB")
        exp = df[[x for x in df.columns if "BB" in x]]
        tm.assert_frame_equal(result, exp)
 
    @pytest.mark.parametrize(
        "name,expected",
        [
            ("a", DataFrame({"a": [1, 2]})),
            ("a", DataFrame({"a": [1, 2]})),
            ("あ", DataFrame({"あ": [3, 4]})),
        ],
    )
    def test_filter_unicode(self, name, expected):
        # GH13101
        df = DataFrame({"a": [1, 2], "あ": [3, 4]})
 
        tm.assert_frame_equal(df.filter(like=name), expected)
        tm.assert_frame_equal(df.filter(regex=name), expected)
 
    @pytest.mark.parametrize("name", ["a", "a"])
    def test_filter_bytestring(self, name):
        # GH13101
        df = DataFrame({b"a": [1, 2], b"b": [3, 4]})
        expected = DataFrame({b"a": [1, 2]})
 
        tm.assert_frame_equal(df.filter(like=name), expected)
        tm.assert_frame_equal(df.filter(regex=name), expected)
 
    def test_filter_corner(self):
        empty = DataFrame()
 
        result = empty.filter([])
        tm.assert_frame_equal(result, empty)
 
        result = empty.filter(like="foo")
        tm.assert_frame_equal(result, empty)
 
    def test_filter_regex_non_string(self):
        # GH#5798 trying to filter on non-string columns should drop,
        #  not raise
        df = DataFrame(np.random.random((3, 2)), columns=["STRING", 123])
        result = df.filter(regex="STRING")
        expected = df[["STRING"]]
        tm.assert_frame_equal(result, expected)