zmc
2023-10-12 ed135d79df12a2466b52dae1a82326941211dcc9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
from __future__ import annotations
 
from datetime import time
 
import numpy as np
 
from pandas._typing import (
    Scalar,
    StorageOptions,
)
from pandas.compat._optional import import_optional_dependency
from pandas.util._decorators import doc
 
from pandas.core.shared_docs import _shared_docs
 
from pandas.io.excel._base import BaseExcelReader
 
 
class XlrdReader(BaseExcelReader):
    @doc(storage_options=_shared_docs["storage_options"])
    def __init__(
        self, filepath_or_buffer, storage_options: StorageOptions = None
    ) -> None:
        """
        Reader using xlrd engine.
 
        Parameters
        ----------
        filepath_or_buffer : str, path object or Workbook
            Object to be parsed.
        {storage_options}
        """
        err_msg = "Install xlrd >= 2.0.1 for xls Excel support"
        import_optional_dependency("xlrd", extra=err_msg)
        super().__init__(filepath_or_buffer, storage_options=storage_options)
 
    @property
    def _workbook_class(self):
        from xlrd import Book
 
        return Book
 
    def load_workbook(self, filepath_or_buffer):
        from xlrd import open_workbook
 
        if hasattr(filepath_or_buffer, "read"):
            data = filepath_or_buffer.read()
            return open_workbook(file_contents=data)
        else:
            return open_workbook(filepath_or_buffer)
 
    @property
    def sheet_names(self):
        return self.book.sheet_names()
 
    def get_sheet_by_name(self, name):
        self.raise_if_bad_sheet_by_name(name)
        return self.book.sheet_by_name(name)
 
    def get_sheet_by_index(self, index):
        self.raise_if_bad_sheet_by_index(index)
        return self.book.sheet_by_index(index)
 
    def get_sheet_data(
        self, sheet, file_rows_needed: int | None = None
    ) -> list[list[Scalar]]:
        from xlrd import (
            XL_CELL_BOOLEAN,
            XL_CELL_DATE,
            XL_CELL_ERROR,
            XL_CELL_NUMBER,
            xldate,
        )
 
        epoch1904 = self.book.datemode
 
        def _parse_cell(cell_contents, cell_typ):
            """
            converts the contents of the cell into a pandas appropriate object
            """
            if cell_typ == XL_CELL_DATE:
                # Use the newer xlrd datetime handling.
                try:
                    cell_contents = xldate.xldate_as_datetime(cell_contents, epoch1904)
                except OverflowError:
                    return cell_contents
 
                # Excel doesn't distinguish between dates and time,
                # so we treat dates on the epoch as times only.
                # Also, Excel supports 1900 and 1904 epochs.
                year = (cell_contents.timetuple())[0:3]
                if (not epoch1904 and year == (1899, 12, 31)) or (
                    epoch1904 and year == (1904, 1, 1)
                ):
                    cell_contents = time(
                        cell_contents.hour,
                        cell_contents.minute,
                        cell_contents.second,
                        cell_contents.microsecond,
                    )
 
            elif cell_typ == XL_CELL_ERROR:
                cell_contents = np.nan
            elif cell_typ == XL_CELL_BOOLEAN:
                cell_contents = bool(cell_contents)
            elif cell_typ == XL_CELL_NUMBER:
                # GH5394 - Excel 'numbers' are always floats
                # it's a minimal perf hit and less surprising
                val = int(cell_contents)
                if val == cell_contents:
                    cell_contents = val
            return cell_contents
 
        data = []
 
        nrows = sheet.nrows
        if file_rows_needed is not None:
            nrows = min(nrows, file_rows_needed)
        for i in range(nrows):
            row = [
                _parse_cell(value, typ)
                for value, typ in zip(sheet.row_values(i), sheet.row_types(i))
            ]
            data.append(row)
 
        return data