zmc
2023-10-12 ed135d79df12a2466b52dae1a82326941211dcc9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
import inspect
import sys
import os
import tempfile
from io import StringIO
from unittest import mock
 
import numpy as np
from numpy.testing import (
    assert_, assert_equal, assert_raises, assert_raises_regex)
from numpy.core.overrides import (
    _get_implementing_args, array_function_dispatch,
    verify_matching_signatures, ARRAY_FUNCTION_ENABLED)
from numpy.compat import pickle
import pytest
 
 
requires_array_function = pytest.mark.skipif(
    not ARRAY_FUNCTION_ENABLED,
    reason="__array_function__ dispatch not enabled.")
 
 
def _return_not_implemented(self, *args, **kwargs):
    return NotImplemented
 
 
# need to define this at the top level to test pickling
@array_function_dispatch(lambda array: (array,))
def dispatched_one_arg(array):
    """Docstring."""
    return 'original'
 
 
@array_function_dispatch(lambda array1, array2: (array1, array2))
def dispatched_two_arg(array1, array2):
    """Docstring."""
    return 'original'
 
 
class TestGetImplementingArgs:
 
    def test_ndarray(self):
        array = np.array(1)
 
        args = _get_implementing_args([array])
        assert_equal(list(args), [array])
 
        args = _get_implementing_args([array, array])
        assert_equal(list(args), [array])
 
        args = _get_implementing_args([array, 1])
        assert_equal(list(args), [array])
 
        args = _get_implementing_args([1, array])
        assert_equal(list(args), [array])
 
    def test_ndarray_subclasses(self):
 
        class OverrideSub(np.ndarray):
            __array_function__ = _return_not_implemented
 
        class NoOverrideSub(np.ndarray):
            pass
 
        array = np.array(1).view(np.ndarray)
        override_sub = np.array(1).view(OverrideSub)
        no_override_sub = np.array(1).view(NoOverrideSub)
 
        args = _get_implementing_args([array, override_sub])
        assert_equal(list(args), [override_sub, array])
 
        args = _get_implementing_args([array, no_override_sub])
        assert_equal(list(args), [no_override_sub, array])
 
        args = _get_implementing_args(
            [override_sub, no_override_sub])
        assert_equal(list(args), [override_sub, no_override_sub])
 
    def test_ndarray_and_duck_array(self):
 
        class Other:
            __array_function__ = _return_not_implemented
 
        array = np.array(1)
        other = Other()
 
        args = _get_implementing_args([other, array])
        assert_equal(list(args), [other, array])
 
        args = _get_implementing_args([array, other])
        assert_equal(list(args), [array, other])
 
    def test_ndarray_subclass_and_duck_array(self):
 
        class OverrideSub(np.ndarray):
            __array_function__ = _return_not_implemented
 
        class Other:
            __array_function__ = _return_not_implemented
 
        array = np.array(1)
        subarray = np.array(1).view(OverrideSub)
        other = Other()
 
        assert_equal(_get_implementing_args([array, subarray, other]),
                     [subarray, array, other])
        assert_equal(_get_implementing_args([array, other, subarray]),
                     [subarray, array, other])
 
    def test_many_duck_arrays(self):
 
        class A:
            __array_function__ = _return_not_implemented
 
        class B(A):
            __array_function__ = _return_not_implemented
 
        class C(A):
            __array_function__ = _return_not_implemented
 
        class D:
            __array_function__ = _return_not_implemented
 
        a = A()
        b = B()
        c = C()
        d = D()
 
        assert_equal(_get_implementing_args([1]), [])
        assert_equal(_get_implementing_args([a]), [a])
        assert_equal(_get_implementing_args([a, 1]), [a])
        assert_equal(_get_implementing_args([a, a, a]), [a])
        assert_equal(_get_implementing_args([a, d, a]), [a, d])
        assert_equal(_get_implementing_args([a, b]), [b, a])
        assert_equal(_get_implementing_args([b, a]), [b, a])
        assert_equal(_get_implementing_args([a, b, c]), [b, c, a])
        assert_equal(_get_implementing_args([a, c, b]), [c, b, a])
 
    def test_too_many_duck_arrays(self):
        namespace = dict(__array_function__=_return_not_implemented)
        types = [type('A' + str(i), (object,), namespace) for i in range(33)]
        relevant_args = [t() for t in types]
 
        actual = _get_implementing_args(relevant_args[:32])
        assert_equal(actual, relevant_args[:32])
 
        with assert_raises_regex(TypeError, 'distinct argument types'):
            _get_implementing_args(relevant_args)
 
 
class TestNDArrayArrayFunction:
 
    @requires_array_function
    def test_method(self):
 
        class Other:
            __array_function__ = _return_not_implemented
 
        class NoOverrideSub(np.ndarray):
            pass
 
        class OverrideSub(np.ndarray):
            __array_function__ = _return_not_implemented
 
        array = np.array([1])
        other = Other()
        no_override_sub = array.view(NoOverrideSub)
        override_sub = array.view(OverrideSub)
 
        result = array.__array_function__(func=dispatched_two_arg,
                                          types=(np.ndarray,),
                                          args=(array, 1.), kwargs={})
        assert_equal(result, 'original')
 
        result = array.__array_function__(func=dispatched_two_arg,
                                          types=(np.ndarray, Other),
                                          args=(array, other), kwargs={})
        assert_(result is NotImplemented)
 
        result = array.__array_function__(func=dispatched_two_arg,
                                          types=(np.ndarray, NoOverrideSub),
                                          args=(array, no_override_sub),
                                          kwargs={})
        assert_equal(result, 'original')
 
        result = array.__array_function__(func=dispatched_two_arg,
                                          types=(np.ndarray, OverrideSub),
                                          args=(array, override_sub),
                                          kwargs={})
        assert_equal(result, 'original')
 
        with assert_raises_regex(TypeError, 'no implementation found'):
            np.concatenate((array, other))
 
        expected = np.concatenate((array, array))
        result = np.concatenate((array, no_override_sub))
        assert_equal(result, expected.view(NoOverrideSub))
        result = np.concatenate((array, override_sub))
        assert_equal(result, expected.view(OverrideSub))
 
    def test_no_wrapper(self):
        # This shouldn't happen unless a user intentionally calls
        # __array_function__ with invalid arguments, but check that we raise
        # an appropriate error all the same.
        array = np.array(1)
        func = lambda x: x
        with assert_raises_regex(AttributeError, '_implementation'):
            array.__array_function__(func=func, types=(np.ndarray,),
                                     args=(array,), kwargs={})
 
 
@requires_array_function
class TestArrayFunctionDispatch:
 
    def test_pickle(self):
        for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
            roundtripped = pickle.loads(
                    pickle.dumps(dispatched_one_arg, protocol=proto))
            assert_(roundtripped is dispatched_one_arg)
 
    def test_name_and_docstring(self):
        assert_equal(dispatched_one_arg.__name__, 'dispatched_one_arg')
        if sys.flags.optimize < 2:
            assert_equal(dispatched_one_arg.__doc__, 'Docstring.')
 
    def test_interface(self):
 
        class MyArray:
            def __array_function__(self, func, types, args, kwargs):
                return (self, func, types, args, kwargs)
 
        original = MyArray()
        (obj, func, types, args, kwargs) = dispatched_one_arg(original)
        assert_(obj is original)
        assert_(func is dispatched_one_arg)
        assert_equal(set(types), {MyArray})
        # assert_equal uses the overloaded np.iscomplexobj() internally
        assert_(args == (original,))
        assert_equal(kwargs, {})
 
    def test_not_implemented(self):
 
        class MyArray:
            def __array_function__(self, func, types, args, kwargs):
                return NotImplemented
 
        array = MyArray()
        with assert_raises_regex(TypeError, 'no implementation found'):
            dispatched_one_arg(array)
 
 
@requires_array_function
class TestVerifyMatchingSignatures:
 
    def test_verify_matching_signatures(self):
 
        verify_matching_signatures(lambda x: 0, lambda x: 0)
        verify_matching_signatures(lambda x=None: 0, lambda x=None: 0)
        verify_matching_signatures(lambda x=1: 0, lambda x=None: 0)
 
        with assert_raises(RuntimeError):
            verify_matching_signatures(lambda a: 0, lambda b: 0)
        with assert_raises(RuntimeError):
            verify_matching_signatures(lambda x: 0, lambda x=None: 0)
        with assert_raises(RuntimeError):
            verify_matching_signatures(lambda x=None: 0, lambda y=None: 0)
        with assert_raises(RuntimeError):
            verify_matching_signatures(lambda x=1: 0, lambda y=1: 0)
 
    def test_array_function_dispatch(self):
 
        with assert_raises(RuntimeError):
            @array_function_dispatch(lambda x: (x,))
            def f(y):
                pass
 
        # should not raise
        @array_function_dispatch(lambda x: (x,), verify=False)
        def f(y):
            pass
 
 
def _new_duck_type_and_implements():
    """Create a duck array type and implements functions."""
    HANDLED_FUNCTIONS = {}
 
    class MyArray:
        def __array_function__(self, func, types, args, kwargs):
            if func not in HANDLED_FUNCTIONS:
                return NotImplemented
            if not all(issubclass(t, MyArray) for t in types):
                return NotImplemented
            return HANDLED_FUNCTIONS[func](*args, **kwargs)
 
    def implements(numpy_function):
        """Register an __array_function__ implementations."""
        def decorator(func):
            HANDLED_FUNCTIONS[numpy_function] = func
            return func
        return decorator
 
    return (MyArray, implements)
 
 
@requires_array_function
class TestArrayFunctionImplementation:
 
    def test_one_arg(self):
        MyArray, implements = _new_duck_type_and_implements()
 
        @implements(dispatched_one_arg)
        def _(array):
            return 'myarray'
 
        assert_equal(dispatched_one_arg(1), 'original')
        assert_equal(dispatched_one_arg(MyArray()), 'myarray')
 
    def test_optional_args(self):
        MyArray, implements = _new_duck_type_and_implements()
 
        @array_function_dispatch(lambda array, option=None: (array,))
        def func_with_option(array, option='default'):
            return option
 
        @implements(func_with_option)
        def my_array_func_with_option(array, new_option='myarray'):
            return new_option
 
        # we don't need to implement every option on __array_function__
        # implementations
        assert_equal(func_with_option(1), 'default')
        assert_equal(func_with_option(1, option='extra'), 'extra')
        assert_equal(func_with_option(MyArray()), 'myarray')
        with assert_raises(TypeError):
            func_with_option(MyArray(), option='extra')
 
        # but new options on implementations can't be used
        result = my_array_func_with_option(MyArray(), new_option='yes')
        assert_equal(result, 'yes')
        with assert_raises(TypeError):
            func_with_option(MyArray(), new_option='no')
 
    def test_not_implemented(self):
        MyArray, implements = _new_duck_type_and_implements()
 
        @array_function_dispatch(lambda array: (array,), module='my')
        def func(array):
            return array
 
        array = np.array(1)
        assert_(func(array) is array)
        assert_equal(func.__module__, 'my')
 
        with assert_raises_regex(
                TypeError, "no implementation found for 'my.func'"):
            func(MyArray())
 
    def test_signature_error_message(self):
        # The lambda function will be named "<lambda>", but the TypeError
        # should show the name as "func"
        def _dispatcher():
            return ()
 
        @array_function_dispatch(_dispatcher)
        def func():
            pass
 
        try:
            func(bad_arg=3)
        except TypeError as e:
            expected_exception = e
 
        try:
            func(bad_arg=3)
            raise AssertionError("must fail")
        except TypeError as exc:
            assert exc.args == expected_exception.args
 
    @pytest.mark.parametrize("value", [234, "this func is not replaced"])
    def test_dispatcher_error(self, value):
        # If the dispatcher raises an error, we must not attempt to mutate it
        error = TypeError(value)
 
        def dispatcher():
            raise error
 
        @array_function_dispatch(dispatcher)
        def func():
            return 3
 
        try:
            func()
            raise AssertionError("must fail")
        except TypeError as exc:
            assert exc is error  # unmodified exception
 
 
class TestNDArrayMethods:
 
    def test_repr(self):
        # gh-12162: should still be defined even if __array_function__ doesn't
        # implement np.array_repr()
 
        class MyArray(np.ndarray):
            def __array_function__(*args, **kwargs):
                return NotImplemented
 
        array = np.array(1).view(MyArray)
        assert_equal(repr(array), 'MyArray(1)')
        assert_equal(str(array), '1')
 
 
class TestNumPyFunctions:
 
    def test_set_module(self):
        assert_equal(np.sum.__module__, 'numpy')
        assert_equal(np.char.equal.__module__, 'numpy.char')
        assert_equal(np.fft.fft.__module__, 'numpy.fft')
        assert_equal(np.linalg.solve.__module__, 'numpy.linalg')
 
    def test_inspect_sum(self):
        signature = inspect.signature(np.sum)
        assert_('axis' in signature.parameters)
 
    @requires_array_function
    def test_override_sum(self):
        MyArray, implements = _new_duck_type_and_implements()
 
        @implements(np.sum)
        def _(array):
            return 'yes'
 
        assert_equal(np.sum(MyArray()), 'yes')
 
    @requires_array_function
    def test_sum_on_mock_array(self):
 
        # We need a proxy for mocks because __array_function__ is only looked
        # up in the class dict
        class ArrayProxy:
            def __init__(self, value):
                self.value = value
            def __array_function__(self, *args, **kwargs):
                return self.value.__array_function__(*args, **kwargs)
            def __array__(self, *args, **kwargs):
                return self.value.__array__(*args, **kwargs)
 
        proxy = ArrayProxy(mock.Mock(spec=ArrayProxy))
        proxy.value.__array_function__.return_value = 1
        result = np.sum(proxy)
        assert_equal(result, 1)
        proxy.value.__array_function__.assert_called_once_with(
            np.sum, (ArrayProxy,), (proxy,), {})
        proxy.value.__array__.assert_not_called()
 
    @requires_array_function
    def test_sum_forwarding_implementation(self):
 
        class MyArray(np.ndarray):
 
            def sum(self, axis, out):
                return 'summed'
 
            def __array_function__(self, func, types, args, kwargs):
                return super().__array_function__(func, types, args, kwargs)
 
        # note: the internal implementation of np.sum() calls the .sum() method
        array = np.array(1).view(MyArray)
        assert_equal(np.sum(array), 'summed')
 
 
class TestArrayLike:
    def setup_method(self):
        class MyArray():
            def __init__(self, function=None):
                self.function = function
 
            def __array_function__(self, func, types, args, kwargs):
                assert func is getattr(np, func.__name__)
                try:
                    my_func = getattr(self, func.__name__)
                except AttributeError:
                    return NotImplemented
                return my_func(*args, **kwargs)
 
        self.MyArray = MyArray
 
        class MyNoArrayFunctionArray():
            def __init__(self, function=None):
                self.function = function
 
        self.MyNoArrayFunctionArray = MyNoArrayFunctionArray
 
    def add_method(self, name, arr_class, enable_value_error=False):
        def _definition(*args, **kwargs):
            # Check that `like=` isn't propagated downstream
            assert 'like' not in kwargs
 
            if enable_value_error and 'value_error' in kwargs:
                raise ValueError
 
            return arr_class(getattr(arr_class, name))
        setattr(arr_class, name, _definition)
 
    def func_args(*args, **kwargs):
        return args, kwargs
 
    @requires_array_function
    def test_array_like_not_implemented(self):
        self.add_method('array', self.MyArray)
 
        ref = self.MyArray.array()
 
        with assert_raises_regex(TypeError, 'no implementation found'):
            array_like = np.asarray(1, like=ref)
 
    _array_tests = [
        ('array', *func_args((1,))),
        ('asarray', *func_args((1,))),
        ('asanyarray', *func_args((1,))),
        ('ascontiguousarray', *func_args((2, 3))),
        ('asfortranarray', *func_args((2, 3))),
        ('require', *func_args((np.arange(6).reshape(2, 3),),
                               requirements=['A', 'F'])),
        ('empty', *func_args((1,))),
        ('full', *func_args((1,), 2)),
        ('ones', *func_args((1,))),
        ('zeros', *func_args((1,))),
        ('arange', *func_args(3)),
        ('frombuffer', *func_args(b'\x00' * 8, dtype=int)),
        ('fromiter', *func_args(range(3), dtype=int)),
        ('fromstring', *func_args('1,2', dtype=int, sep=',')),
        ('loadtxt', *func_args(lambda: StringIO('0 1\n2 3'))),
        ('genfromtxt', *func_args(lambda: StringIO('1,2.1'),
                                  dtype=[('int', 'i8'), ('float', 'f8')],
                                  delimiter=',')),
    ]
 
    @pytest.mark.parametrize('function, args, kwargs', _array_tests)
    @pytest.mark.parametrize('numpy_ref', [True, False])
    @requires_array_function
    def test_array_like(self, function, args, kwargs, numpy_ref):
        self.add_method('array', self.MyArray)
        self.add_method(function, self.MyArray)
        np_func = getattr(np, function)
        my_func = getattr(self.MyArray, function)
 
        if numpy_ref is True:
            ref = np.array(1)
        else:
            ref = self.MyArray.array()
 
        like_args = tuple(a() if callable(a) else a for a in args)
        array_like = np_func(*like_args, **kwargs, like=ref)
 
        if numpy_ref is True:
            assert type(array_like) is np.ndarray
 
            np_args = tuple(a() if callable(a) else a for a in args)
            np_arr = np_func(*np_args, **kwargs)
 
            # Special-case np.empty to ensure values match
            if function == "empty":
                np_arr.fill(1)
                array_like.fill(1)
 
            assert_equal(array_like, np_arr)
        else:
            assert type(array_like) is self.MyArray
            assert array_like.function is my_func
 
    @pytest.mark.parametrize('function, args, kwargs', _array_tests)
    @pytest.mark.parametrize('ref', [1, [1], "MyNoArrayFunctionArray"])
    @requires_array_function
    def test_no_array_function_like(self, function, args, kwargs, ref):
        self.add_method('array', self.MyNoArrayFunctionArray)
        self.add_method(function, self.MyNoArrayFunctionArray)
        np_func = getattr(np, function)
 
        # Instantiate ref if it's the MyNoArrayFunctionArray class
        if ref == "MyNoArrayFunctionArray":
            ref = self.MyNoArrayFunctionArray.array()
 
        like_args = tuple(a() if callable(a) else a for a in args)
 
        with assert_raises_regex(TypeError,
                'The `like` argument must be an array-like that implements'):
            np_func(*like_args, **kwargs, like=ref)
 
    @pytest.mark.parametrize('numpy_ref', [True, False])
    def test_array_like_fromfile(self, numpy_ref):
        self.add_method('array', self.MyArray)
        self.add_method("fromfile", self.MyArray)
 
        if numpy_ref is True:
            ref = np.array(1)
        else:
            ref = self.MyArray.array()
 
        data = np.random.random(5)
 
        with tempfile.TemporaryDirectory() as tmpdir:
            fname = os.path.join(tmpdir, "testfile")
            data.tofile(fname)
 
            array_like = np.fromfile(fname, like=ref)
            if numpy_ref is True:
                assert type(array_like) is np.ndarray
                np_res = np.fromfile(fname, like=ref)
                assert_equal(np_res, data)
                assert_equal(array_like, np_res)
            else:
                assert type(array_like) is self.MyArray
                assert array_like.function is self.MyArray.fromfile
 
    @requires_array_function
    def test_exception_handling(self):
        self.add_method('array', self.MyArray, enable_value_error=True)
 
        ref = self.MyArray.array()
 
        with assert_raises(TypeError):
            # Raises the error about `value_error` being invalid first
            np.array(1, value_error=True, like=ref)
 
    @pytest.mark.parametrize('function, args, kwargs', _array_tests)
    def test_like_as_none(self, function, args, kwargs):
        self.add_method('array', self.MyArray)
        self.add_method(function, self.MyArray)
        np_func = getattr(np, function)
 
        like_args = tuple(a() if callable(a) else a for a in args)
        # required for loadtxt and genfromtxt to init w/o error.
        like_args_exp = tuple(a() if callable(a) else a for a in args)
 
        array_like = np_func(*like_args, **kwargs, like=None)
        expected = np_func(*like_args_exp, **kwargs)
        # Special-case np.empty to ensure values match
        if function == "empty":
            array_like.fill(1)
            expected.fill(1)
        assert_equal(array_like, expected)