import numpy as np
|
import pytest
|
|
from pandas import Series
|
import pandas._testing as tm
|
|
|
def no_nans(x):
|
return x.notna().all().all()
|
|
|
def all_na(x):
|
return x.isnull().all().all()
|
|
|
@pytest.mark.parametrize("f", [lambda v: Series(v).sum(), np.nansum, np.sum])
|
def test_expanding_apply_consistency_sum_nans(request, all_data, min_periods, f):
|
if f is np.sum:
|
if not no_nans(all_data) and not (
|
all_na(all_data) and not all_data.empty and min_periods > 0
|
):
|
request.node.add_marker(
|
pytest.mark.xfail(reason="np.sum has different behavior with NaNs")
|
)
|
expanding_f_result = all_data.expanding(min_periods=min_periods).sum()
|
expanding_apply_f_result = all_data.expanding(min_periods=min_periods).apply(
|
func=f, raw=True
|
)
|
tm.assert_equal(expanding_f_result, expanding_apply_f_result)
|
|
|
@pytest.mark.parametrize("ddof", [0, 1])
|
def test_moments_consistency_var(all_data, min_periods, ddof):
|
var_x = all_data.expanding(min_periods=min_periods).var(ddof=ddof)
|
assert not (var_x < 0).any().any()
|
|
if ddof == 0:
|
# check that biased var(x) == mean(x^2) - mean(x)^2
|
mean_x2 = (all_data * all_data).expanding(min_periods=min_periods).mean()
|
mean_x = all_data.expanding(min_periods=min_periods).mean()
|
tm.assert_equal(var_x, mean_x2 - (mean_x * mean_x))
|
|
|
@pytest.mark.parametrize("ddof", [0, 1])
|
def test_moments_consistency_var_constant(consistent_data, min_periods, ddof):
|
count_x = consistent_data.expanding(min_periods=min_periods).count()
|
var_x = consistent_data.expanding(min_periods=min_periods).var(ddof=ddof)
|
|
# check that variance of constant series is identically 0
|
assert not (var_x > 0).any().any()
|
expected = consistent_data * np.nan
|
expected[count_x >= max(min_periods, 1)] = 0.0
|
if ddof == 1:
|
expected[count_x < 2] = np.nan
|
tm.assert_equal(var_x, expected)
|
|
|
@pytest.mark.parametrize("ddof", [0, 1])
|
def test_expanding_consistency_var_std_cov(all_data, min_periods, ddof):
|
var_x = all_data.expanding(min_periods=min_periods).var(ddof=ddof)
|
assert not (var_x < 0).any().any()
|
|
std_x = all_data.expanding(min_periods=min_periods).std(ddof=ddof)
|
assert not (std_x < 0).any().any()
|
|
# check that var(x) == std(x)^2
|
tm.assert_equal(var_x, std_x * std_x)
|
|
cov_x_x = all_data.expanding(min_periods=min_periods).cov(all_data, ddof=ddof)
|
assert not (cov_x_x < 0).any().any()
|
|
# check that var(x) == cov(x, x)
|
tm.assert_equal(var_x, cov_x_x)
|
|
|
@pytest.mark.parametrize("ddof", [0, 1])
|
def test_expanding_consistency_series_cov_corr(series_data, min_periods, ddof):
|
var_x_plus_y = (
|
(series_data + series_data).expanding(min_periods=min_periods).var(ddof=ddof)
|
)
|
var_x = series_data.expanding(min_periods=min_periods).var(ddof=ddof)
|
var_y = series_data.expanding(min_periods=min_periods).var(ddof=ddof)
|
cov_x_y = series_data.expanding(min_periods=min_periods).cov(series_data, ddof=ddof)
|
# check that cov(x, y) == (var(x+y) - var(x) -
|
# var(y)) / 2
|
tm.assert_equal(cov_x_y, 0.5 * (var_x_plus_y - var_x - var_y))
|
|
# check that corr(x, y) == cov(x, y) / (std(x) *
|
# std(y))
|
corr_x_y = series_data.expanding(min_periods=min_periods).corr(series_data)
|
std_x = series_data.expanding(min_periods=min_periods).std(ddof=ddof)
|
std_y = series_data.expanding(min_periods=min_periods).std(ddof=ddof)
|
tm.assert_equal(corr_x_y, cov_x_y / (std_x * std_y))
|
|
if ddof == 0:
|
# check that biased cov(x, y) == mean(x*y) -
|
# mean(x)*mean(y)
|
mean_x = series_data.expanding(min_periods=min_periods).mean()
|
mean_y = series_data.expanding(min_periods=min_periods).mean()
|
mean_x_times_y = (
|
(series_data * series_data).expanding(min_periods=min_periods).mean()
|
)
|
tm.assert_equal(cov_x_y, mean_x_times_y - (mean_x * mean_y))
|
|
|
def test_expanding_consistency_mean(all_data, min_periods):
|
result = all_data.expanding(min_periods=min_periods).mean()
|
expected = (
|
all_data.expanding(min_periods=min_periods).sum()
|
/ all_data.expanding(min_periods=min_periods).count()
|
)
|
tm.assert_equal(result, expected.astype("float64"))
|
|
|
def test_expanding_consistency_constant(consistent_data, min_periods):
|
count_x = consistent_data.expanding().count()
|
mean_x = consistent_data.expanding(min_periods=min_periods).mean()
|
# check that correlation of a series with itself is either 1 or NaN
|
corr_x_x = consistent_data.expanding(min_periods=min_periods).corr(consistent_data)
|
|
exp = (
|
consistent_data.max()
|
if isinstance(consistent_data, Series)
|
else consistent_data.max().max()
|
)
|
|
# check mean of constant series
|
expected = consistent_data * np.nan
|
expected[count_x >= max(min_periods, 1)] = exp
|
tm.assert_equal(mean_x, expected)
|
|
# check correlation of constant series with itself is NaN
|
expected[:] = np.nan
|
tm.assert_equal(corr_x_x, expected)
|
|
|
def test_expanding_consistency_var_debiasing_factors(all_data, min_periods):
|
# check variance debiasing factors
|
var_unbiased_x = all_data.expanding(min_periods=min_periods).var()
|
var_biased_x = all_data.expanding(min_periods=min_periods).var(ddof=0)
|
var_debiasing_factors_x = all_data.expanding().count() / (
|
all_data.expanding().count() - 1.0
|
).replace(0.0, np.nan)
|
tm.assert_equal(var_unbiased_x, var_biased_x * var_debiasing_factors_x)
|