zmc
2023-08-08 e792e9a60d958b93aef96050644f369feb25d61b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
from datetime import datetime
 
import numpy as np
import pytest
 
import pandas as pd
from pandas import (
    DataFrame,
    Index,
    MultiIndex,
    RangeIndex,
    Series,
    date_range,
)
import pandas._testing as tm
 
 
class TestResetIndex:
    def test_reset_index_dti_round_trip(self):
        dti = date_range(start="1/1/2001", end="6/1/2001", freq="D")._with_freq(None)
        d1 = DataFrame({"v": np.random.rand(len(dti))}, index=dti)
        d2 = d1.reset_index()
        assert d2.dtypes[0] == np.dtype("M8[ns]")
        d3 = d2.set_index("index")
        tm.assert_frame_equal(d1, d3, check_names=False)
 
        # GH#2329
        stamp = datetime(2012, 11, 22)
        df = DataFrame([[stamp, 12.1]], columns=["Date", "Value"])
        df = df.set_index("Date")
 
        assert df.index[0] == stamp
        assert df.reset_index()["Date"][0] == stamp
 
    def test_reset_index(self):
        df = tm.makeDataFrame()[:5]
        ser = df.stack()
        ser.index.names = ["hash", "category"]
 
        ser.name = "value"
        df = ser.reset_index()
        assert "value" in df
 
        df = ser.reset_index(name="value2")
        assert "value2" in df
 
        # check inplace
        s = ser.reset_index(drop=True)
        s2 = ser
        return_value = s2.reset_index(drop=True, inplace=True)
        assert return_value is None
        tm.assert_series_equal(s, s2)
 
        # level
        index = MultiIndex(
            levels=[["bar"], ["one", "two", "three"], [0, 1]],
            codes=[[0, 0, 0, 0, 0, 0], [0, 1, 2, 0, 1, 2], [0, 1, 0, 1, 0, 1]],
        )
        s = Series(np.random.randn(6), index=index)
        rs = s.reset_index(level=1)
        assert len(rs.columns) == 2
 
        rs = s.reset_index(level=[0, 2], drop=True)
        tm.assert_index_equal(rs.index, Index(index.get_level_values(1)))
        assert isinstance(rs, Series)
 
    def test_reset_index_name(self):
        s = Series([1, 2, 3], index=Index(range(3), name="x"))
        assert s.reset_index().index.name is None
        assert s.reset_index(drop=True).index.name is None
 
    def test_reset_index_level(self):
        df = DataFrame([[1, 2, 3], [4, 5, 6]], columns=["A", "B", "C"])
 
        for levels in ["A", "B"], [0, 1]:
            # With MultiIndex
            s = df.set_index(["A", "B"])["C"]
 
            result = s.reset_index(level=levels[0])
            tm.assert_frame_equal(result, df.set_index("B"))
 
            result = s.reset_index(level=levels[:1])
            tm.assert_frame_equal(result, df.set_index("B"))
 
            result = s.reset_index(level=levels)
            tm.assert_frame_equal(result, df)
 
            result = df.set_index(["A", "B"]).reset_index(level=levels, drop=True)
            tm.assert_frame_equal(result, df[["C"]])
 
            with pytest.raises(KeyError, match="Level E "):
                s.reset_index(level=["A", "E"])
 
            # With single-level Index
            s = df.set_index("A")["B"]
 
            result = s.reset_index(level=levels[0])
            tm.assert_frame_equal(result, df[["A", "B"]])
 
            result = s.reset_index(level=levels[:1])
            tm.assert_frame_equal(result, df[["A", "B"]])
 
            result = s.reset_index(level=levels[0], drop=True)
            tm.assert_series_equal(result, df["B"])
 
            with pytest.raises(IndexError, match="Too many levels"):
                s.reset_index(level=[0, 1, 2])
 
        # Check that .reset_index([],drop=True) doesn't fail
        result = Series(range(4)).reset_index([], drop=True)
        expected = Series(range(4))
        tm.assert_series_equal(result, expected)
 
    def test_reset_index_range(self):
        # GH 12071
        s = Series(range(2), name="A", dtype="int64")
        series_result = s.reset_index()
        assert isinstance(series_result.index, RangeIndex)
        series_expected = DataFrame(
            [[0, 0], [1, 1]], columns=["index", "A"], index=RangeIndex(stop=2)
        )
        tm.assert_frame_equal(series_result, series_expected)
 
    def test_reset_index_drop_errors(self):
        #  GH 20925
 
        # KeyError raised for series index when passed level name is missing
        s = Series(range(4))
        with pytest.raises(KeyError, match="does not match index name"):
            s.reset_index("wrong", drop=True)
        with pytest.raises(KeyError, match="does not match index name"):
            s.reset_index("wrong")
 
        # KeyError raised for series when level to be dropped is missing
        s = Series(range(4), index=MultiIndex.from_product([[1, 2]] * 2))
        with pytest.raises(KeyError, match="not found"):
            s.reset_index("wrong", drop=True)
 
    def test_reset_index_with_drop(self, series_with_multilevel_index):
        ser = series_with_multilevel_index
 
        deleveled = ser.reset_index()
        assert isinstance(deleveled, DataFrame)
        assert len(deleveled.columns) == len(ser.index.levels) + 1
        assert deleveled.index.name == ser.index.name
 
        deleveled = ser.reset_index(drop=True)
        assert isinstance(deleveled, Series)
        assert deleveled.index.name == ser.index.name
 
    def test_reset_index_inplace_and_drop_ignore_name(self):
        # GH#44575
        ser = Series(range(2), name="old")
        ser.reset_index(name="new", drop=True, inplace=True)
        expected = Series(range(2), name="old")
        tm.assert_series_equal(ser, expected)
 
 
@pytest.mark.parametrize(
    "array, dtype",
    [
        (["a", "b"], object),
        (
            pd.period_range("12-1-2000", periods=2, freq="Q-DEC"),
            pd.PeriodDtype(freq="Q-DEC"),
        ),
    ],
)
def test_reset_index_dtypes_on_empty_series_with_multiindex(array, dtype):
    # GH 19602 - Preserve dtype on empty Series with MultiIndex
    idx = MultiIndex.from_product([[0, 1], [0.5, 1.0], array])
    result = Series(dtype=object, index=idx)[:0].reset_index().dtypes
    expected = Series(
        {"level_0": np.int64, "level_1": np.float64, "level_2": dtype, 0: object}
    )
    tm.assert_series_equal(result, expected)
 
 
@pytest.mark.parametrize(
    "names, expected_names",
    [
        (["A", "A"], ["A", "A"]),
        (["level_1", None], ["level_1", "level_1"]),
    ],
)
@pytest.mark.parametrize("allow_duplicates", [False, True])
def test_column_name_duplicates(names, expected_names, allow_duplicates):
    # GH#44755 reset_index with duplicate column labels
    s = Series([1], index=MultiIndex.from_arrays([[1], [1]], names=names))
    if allow_duplicates:
        result = s.reset_index(allow_duplicates=True)
        expected = DataFrame([[1, 1, 1]], columns=expected_names + [0])
        tm.assert_frame_equal(result, expected)
    else:
        with pytest.raises(ValueError, match="cannot insert"):
            s.reset_index()