zmc
2023-08-08 e792e9a60d958b93aef96050644f369feb25d61b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
import numpy as np
import pytest
 
from pandas import (
    NA,
    Categorical,
    Float64Dtype,
    Index,
    MultiIndex,
    NaT,
    Period,
    PeriodIndex,
    Series,
    Timedelta,
    Timestamp,
    date_range,
    isna,
)
import pandas._testing as tm
 
 
def test_reindex(datetime_series, string_series):
    identity = string_series.reindex(string_series.index)
 
    # __array_interface__ is not defined for older numpies
    # and on some pythons
    try:
        assert np.may_share_memory(string_series.index, identity.index)
    except AttributeError:
        pass
 
    assert identity.index.is_(string_series.index)
    assert identity.index.identical(string_series.index)
 
    subIndex = string_series.index[10:20]
    subSeries = string_series.reindex(subIndex)
 
    for idx, val in subSeries.items():
        assert val == string_series[idx]
 
    subIndex2 = datetime_series.index[10:20]
    subTS = datetime_series.reindex(subIndex2)
 
    for idx, val in subTS.items():
        assert val == datetime_series[idx]
    stuffSeries = datetime_series.reindex(subIndex)
 
    assert np.isnan(stuffSeries).all()
 
    # This is extremely important for the Cython code to not screw up
    nonContigIndex = datetime_series.index[::2]
    subNonContig = datetime_series.reindex(nonContigIndex)
    for idx, val in subNonContig.items():
        assert val == datetime_series[idx]
 
    # return a copy the same index here
    result = datetime_series.reindex()
    assert result is not datetime_series
 
 
def test_reindex_nan():
    ts = Series([2, 3, 5, 7], index=[1, 4, np.nan, 8])
 
    i, j = [np.nan, 1, np.nan, 8, 4, np.nan], [2, 0, 2, 3, 1, 2]
    tm.assert_series_equal(ts.reindex(i), ts.iloc[j])
 
    ts.index = ts.index.astype("object")
 
    # reindex coerces index.dtype to float, loc/iloc doesn't
    tm.assert_series_equal(ts.reindex(i), ts.iloc[j], check_index_type=False)
 
 
def test_reindex_series_add_nat():
    rng = date_range("1/1/2000 00:00:00", periods=10, freq="10s")
    series = Series(rng)
 
    result = series.reindex(range(15))
    assert np.issubdtype(result.dtype, np.dtype("M8[ns]"))
 
    mask = result.isna()
    assert mask[-5:].all()
    assert not mask[:-5].any()
 
 
def test_reindex_with_datetimes():
    rng = date_range("1/1/2000", periods=20)
    ts = Series(np.random.randn(20), index=rng)
 
    result = ts.reindex(list(ts.index[5:10]))
    expected = ts[5:10]
    expected.index = expected.index._with_freq(None)
    tm.assert_series_equal(result, expected)
 
    result = ts[list(ts.index[5:10])]
    tm.assert_series_equal(result, expected)
 
 
def test_reindex_corner(datetime_series):
    # (don't forget to fix this) I think it's fixed
    empty = Series(index=[])
    empty.reindex(datetime_series.index, method="pad")  # it works
 
    # corner case: pad empty series
    reindexed = empty.reindex(datetime_series.index, method="pad")
 
    # pass non-Index
    reindexed = datetime_series.reindex(list(datetime_series.index))
    datetime_series.index = datetime_series.index._with_freq(None)
    tm.assert_series_equal(datetime_series, reindexed)
 
    # bad fill method
    ts = datetime_series[::2]
    msg = (
        r"Invalid fill method\. Expecting pad \(ffill\), backfill "
        r"\(bfill\) or nearest\. Got foo"
    )
    with pytest.raises(ValueError, match=msg):
        ts.reindex(datetime_series.index, method="foo")
 
 
def test_reindex_pad():
    s = Series(np.arange(10), dtype="int64")
    s2 = s[::2]
 
    reindexed = s2.reindex(s.index, method="pad")
    reindexed2 = s2.reindex(s.index, method="ffill")
    tm.assert_series_equal(reindexed, reindexed2)
 
    expected = Series([0, 0, 2, 2, 4, 4, 6, 6, 8, 8])
    tm.assert_series_equal(reindexed, expected)
 
    # GH4604
    s = Series([1, 2, 3, 4, 5], index=["a", "b", "c", "d", "e"])
    new_index = ["a", "g", "c", "f"]
    expected = Series([1, 1, 3, 3], index=new_index)
 
    # this changes dtype because the ffill happens after
    result = s.reindex(new_index).ffill()
    tm.assert_series_equal(result, expected.astype("float64"))
 
    result = s.reindex(new_index).ffill(downcast="infer")
    tm.assert_series_equal(result, expected)
 
    expected = Series([1, 5, 3, 5], index=new_index)
    result = s.reindex(new_index, method="ffill")
    tm.assert_series_equal(result, expected)
 
    # inference of new dtype
    s = Series([True, False, False, True], index=list("abcd"))
    new_index = "agc"
    result = s.reindex(list(new_index)).ffill()
    expected = Series([True, True, False], index=list(new_index))
    tm.assert_series_equal(result, expected)
 
    # GH4618 shifted series downcasting
    s = Series(False, index=range(0, 5))
    result = s.shift(1).fillna(method="bfill")
    expected = Series(False, index=range(0, 5))
    tm.assert_series_equal(result, expected)
 
 
def test_reindex_nearest():
    s = Series(np.arange(10, dtype="int64"))
    target = [0.1, 0.9, 1.5, 2.0]
    result = s.reindex(target, method="nearest")
    expected = Series(np.around(target).astype("int64"), target)
    tm.assert_series_equal(expected, result)
 
    result = s.reindex(target, method="nearest", tolerance=0.2)
    expected = Series([0, 1, np.nan, 2], target)
    tm.assert_series_equal(expected, result)
 
    result = s.reindex(target, method="nearest", tolerance=[0.3, 0.01, 0.4, 3])
    expected = Series([0, np.nan, np.nan, 2], target)
    tm.assert_series_equal(expected, result)
 
 
def test_reindex_int(datetime_series):
    ts = datetime_series[::2]
    int_ts = Series(np.zeros(len(ts), dtype=int), index=ts.index)
 
    # this should work fine
    reindexed_int = int_ts.reindex(datetime_series.index)
 
    # if NaNs introduced
    assert reindexed_int.dtype == np.float_
 
    # NO NaNs introduced
    reindexed_int = int_ts.reindex(int_ts.index[::2])
    assert reindexed_int.dtype == np.int_
 
 
def test_reindex_bool(datetime_series):
    # A series other than float, int, string, or object
    ts = datetime_series[::2]
    bool_ts = Series(np.zeros(len(ts), dtype=bool), index=ts.index)
 
    # this should work fine
    reindexed_bool = bool_ts.reindex(datetime_series.index)
 
    # if NaNs introduced
    assert reindexed_bool.dtype == np.object_
 
    # NO NaNs introduced
    reindexed_bool = bool_ts.reindex(bool_ts.index[::2])
    assert reindexed_bool.dtype == np.bool_
 
 
def test_reindex_bool_pad(datetime_series):
    # fail
    ts = datetime_series[5:]
    bool_ts = Series(np.zeros(len(ts), dtype=bool), index=ts.index)
    filled_bool = bool_ts.reindex(datetime_series.index, method="pad")
    assert isna(filled_bool[:5]).all()
 
 
def test_reindex_categorical():
    index = date_range("20000101", periods=3)
 
    # reindexing to an invalid Categorical
    s = Series(["a", "b", "c"], dtype="category")
    result = s.reindex(index)
    expected = Series(
        Categorical(values=[np.nan, np.nan, np.nan], categories=["a", "b", "c"])
    )
    expected.index = index
    tm.assert_series_equal(result, expected)
 
    # partial reindexing
    expected = Series(Categorical(values=["b", "c"], categories=["a", "b", "c"]))
    expected.index = [1, 2]
    result = s.reindex([1, 2])
    tm.assert_series_equal(result, expected)
 
    expected = Series(Categorical(values=["c", np.nan], categories=["a", "b", "c"]))
    expected.index = [2, 3]
    result = s.reindex([2, 3])
    tm.assert_series_equal(result, expected)
 
 
def test_reindex_astype_order_consistency():
    # GH#17444
    ser = Series([1, 2, 3], index=[2, 0, 1])
    new_index = [0, 1, 2]
    temp_dtype = "category"
    new_dtype = str
    result = ser.reindex(new_index).astype(temp_dtype).astype(new_dtype)
    expected = ser.astype(temp_dtype).reindex(new_index).astype(new_dtype)
    tm.assert_series_equal(result, expected)
 
 
def test_reindex_fill_value():
    # -----------------------------------------------------------
    # floats
    floats = Series([1.0, 2.0, 3.0])
    result = floats.reindex([1, 2, 3])
    expected = Series([2.0, 3.0, np.nan], index=[1, 2, 3])
    tm.assert_series_equal(result, expected)
 
    result = floats.reindex([1, 2, 3], fill_value=0)
    expected = Series([2.0, 3.0, 0], index=[1, 2, 3])
    tm.assert_series_equal(result, expected)
 
    # -----------------------------------------------------------
    # ints
    ints = Series([1, 2, 3])
 
    result = ints.reindex([1, 2, 3])
    expected = Series([2.0, 3.0, np.nan], index=[1, 2, 3])
    tm.assert_series_equal(result, expected)
 
    # don't upcast
    result = ints.reindex([1, 2, 3], fill_value=0)
    expected = Series([2, 3, 0], index=[1, 2, 3])
    assert issubclass(result.dtype.type, np.integer)
    tm.assert_series_equal(result, expected)
 
    # -----------------------------------------------------------
    # objects
    objects = Series([1, 2, 3], dtype=object)
 
    result = objects.reindex([1, 2, 3])
    expected = Series([2, 3, np.nan], index=[1, 2, 3], dtype=object)
    tm.assert_series_equal(result, expected)
 
    result = objects.reindex([1, 2, 3], fill_value="foo")
    expected = Series([2, 3, "foo"], index=[1, 2, 3], dtype=object)
    tm.assert_series_equal(result, expected)
 
    # ------------------------------------------------------------
    # bools
    bools = Series([True, False, True])
 
    result = bools.reindex([1, 2, 3])
    expected = Series([False, True, np.nan], index=[1, 2, 3], dtype=object)
    tm.assert_series_equal(result, expected)
 
    result = bools.reindex([1, 2, 3], fill_value=False)
    expected = Series([False, True, False], index=[1, 2, 3])
    tm.assert_series_equal(result, expected)
 
 
@pytest.mark.parametrize("dtype", ["datetime64[ns]", "timedelta64[ns]"])
@pytest.mark.parametrize("fill_value", ["string", 0, Timedelta(0)])
def test_reindex_fill_value_datetimelike_upcast(dtype, fill_value, using_array_manager):
    # https://github.com/pandas-dev/pandas/issues/42921
    if using_array_manager:
        pytest.skip("Array manager does not promote dtype, hence we fail")
 
    if dtype == "timedelta64[ns]" and fill_value == Timedelta(0):
        # use the scalar that is not compatible with the dtype for this test
        fill_value = Timestamp(0)
 
    ser = Series([NaT], dtype=dtype)
 
    result = ser.reindex([0, 1], fill_value=fill_value)
    expected = Series([None, fill_value], index=[0, 1], dtype=object)
    tm.assert_series_equal(result, expected)
 
 
def test_reindex_datetimeindexes_tz_naive_and_aware():
    # GH 8306
    idx = date_range("20131101", tz="America/Chicago", periods=7)
    newidx = date_range("20131103", periods=10, freq="H")
    s = Series(range(7), index=idx)
    msg = (
        r"Cannot compare dtypes datetime64\[ns, America/Chicago\] "
        r"and datetime64\[ns\]"
    )
    with pytest.raises(TypeError, match=msg):
        s.reindex(newidx, method="ffill")
 
 
def test_reindex_empty_series_tz_dtype():
    # GH 20869
    result = Series(dtype="datetime64[ns, UTC]").reindex([0, 1])
    expected = Series([NaT] * 2, dtype="datetime64[ns, UTC]")
    tm.assert_equal(result, expected)
 
 
@pytest.mark.parametrize(
    "p_values, o_values, values, expected_values",
    [
        (
            [Period("2019Q1", "Q-DEC"), Period("2019Q2", "Q-DEC")],
            [Period("2019Q1", "Q-DEC"), Period("2019Q2", "Q-DEC"), "All"],
            [1.0, 1.0],
            [1.0, 1.0, np.nan],
        ),
        (
            [Period("2019Q1", "Q-DEC"), Period("2019Q2", "Q-DEC")],
            [Period("2019Q1", "Q-DEC"), Period("2019Q2", "Q-DEC")],
            [1.0, 1.0],
            [1.0, 1.0],
        ),
    ],
)
def test_reindex_periodindex_with_object(p_values, o_values, values, expected_values):
    # GH#28337
    period_index = PeriodIndex(p_values)
    object_index = Index(o_values)
 
    ser = Series(values, index=period_index)
    result = ser.reindex(object_index)
    expected = Series(expected_values, index=object_index)
    tm.assert_series_equal(result, expected)
 
 
def test_reindex_too_many_args():
    # GH 40980
    ser = Series([1, 2])
    msg = r"reindex\(\) takes from 1 to 2 positional arguments but 3 were given"
    with pytest.raises(TypeError, match=msg):
        ser.reindex([2, 3], False)
 
 
def test_reindex_double_index():
    # GH 40980
    ser = Series([1, 2])
    msg = r"reindex\(\) got multiple values for argument 'index'"
    with pytest.raises(TypeError, match=msg):
        ser.reindex([2, 3], index=[3, 4])
 
 
def test_reindex_no_posargs():
    # GH 40980
    ser = Series([1, 2])
    result = ser.reindex(index=[1, 0])
    expected = Series([2, 1], index=[1, 0])
    tm.assert_series_equal(result, expected)
 
 
@pytest.mark.parametrize("values", [[["a"], ["x"]], [[], []]])
def test_reindex_empty_with_level(values):
    # GH41170
    ser = Series(
        range(len(values[0])), index=MultiIndex.from_arrays(values), dtype="object"
    )
    result = ser.reindex(np.array(["b"]), level=0)
    expected = Series(
        index=MultiIndex(levels=[["b"], values[1]], codes=[[], []]), dtype="object"
    )
    tm.assert_series_equal(result, expected)
 
 
def test_reindex_missing_category():
    # GH#18185
    ser = Series([1, 2, 3, 1], dtype="category")
    msg = r"Cannot setitem on a Categorical with a new category \(-1\)"
    with pytest.raises(TypeError, match=msg):
        ser.reindex([1, 2, 3, 4, 5], fill_value=-1)
 
 
def test_reindexing_with_float64_NA_log():
    # GH 47055
    s = Series([1.0, NA], dtype=Float64Dtype())
    s_reindex = s.reindex(range(3))
    result = s_reindex.values._data
    expected = np.array([1, np.NaN, np.NaN])
    tm.assert_numpy_array_equal(result, expected)
    with tm.assert_produces_warning(None):
        result_log = np.log(s_reindex)
        expected_log = Series([0, np.NaN, np.NaN], dtype=Float64Dtype())
        tm.assert_series_equal(result_log, expected_log)