zmc
2023-08-08 e792e9a60d958b93aef96050644f369feb25d61b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import numpy as np
import pytest
 
from pandas.core.dtypes.common import is_integer
 
import pandas as pd
from pandas import (
    Index,
    Series,
)
import pandas._testing as tm
from pandas.core.indexes.datetimes import Timestamp
 
 
class TestSeriesQuantile:
    def test_quantile(self, datetime_series):
        q = datetime_series.quantile(0.1)
        assert q == np.percentile(datetime_series.dropna(), 10)
 
        q = datetime_series.quantile(0.9)
        assert q == np.percentile(datetime_series.dropna(), 90)
 
        # object dtype
        q = Series(datetime_series, dtype=object).quantile(0.9)
        assert q == np.percentile(datetime_series.dropna(), 90)
 
        # datetime64[ns] dtype
        dts = datetime_series.index.to_series()
        q = dts.quantile(0.2)
        assert q == Timestamp("2000-01-10 19:12:00")
 
        # timedelta64[ns] dtype
        tds = dts.diff()
        q = tds.quantile(0.25)
        assert q == pd.to_timedelta("24:00:00")
 
        # GH7661
        result = Series([np.timedelta64("NaT")]).sum()
        assert result == pd.Timedelta(0)
 
        msg = "percentiles should all be in the interval \\[0, 1\\]"
        for invalid in [-1, 2, [0.5, -1], [0.5, 2]]:
            with pytest.raises(ValueError, match=msg):
                datetime_series.quantile(invalid)
 
    def test_quantile_multi(self, datetime_series):
        qs = [0.1, 0.9]
        result = datetime_series.quantile(qs)
        expected = Series(
            [
                np.percentile(datetime_series.dropna(), 10),
                np.percentile(datetime_series.dropna(), 90),
            ],
            index=qs,
            name=datetime_series.name,
        )
        tm.assert_series_equal(result, expected)
 
        dts = datetime_series.index.to_series()
        dts.name = "xxx"
        result = dts.quantile((0.2, 0.2))
        expected = Series(
            [Timestamp("2000-01-10 19:12:00"), Timestamp("2000-01-10 19:12:00")],
            index=[0.2, 0.2],
            name="xxx",
        )
        tm.assert_series_equal(result, expected)
 
        result = datetime_series.quantile([])
        expected = Series(
            [], name=datetime_series.name, index=Index([], dtype=float), dtype="float64"
        )
        tm.assert_series_equal(result, expected)
 
    def test_quantile_interpolation(self, datetime_series):
        # see gh-10174
 
        # interpolation = linear (default case)
        q = datetime_series.quantile(0.1, interpolation="linear")
        assert q == np.percentile(datetime_series.dropna(), 10)
        q1 = datetime_series.quantile(0.1)
        assert q1 == np.percentile(datetime_series.dropna(), 10)
 
        # test with and without interpolation keyword
        assert q == q1
 
    def test_quantile_interpolation_dtype(self):
        # GH #10174
 
        # interpolation = linear (default case)
        q = Series([1, 3, 4]).quantile(0.5, interpolation="lower")
        assert q == np.percentile(np.array([1, 3, 4]), 50)
        assert is_integer(q)
 
        q = Series([1, 3, 4]).quantile(0.5, interpolation="higher")
        assert q == np.percentile(np.array([1, 3, 4]), 50)
        assert is_integer(q)
 
    def test_quantile_nan(self):
        # GH 13098
        s = Series([1, 2, 3, 4, np.nan])
        result = s.quantile(0.5)
        expected = 2.5
        assert result == expected
 
        # all nan/empty
        s1 = Series([], dtype=object)
        cases = [s1, Series([np.nan, np.nan])]
 
        for s in cases:
            res = s.quantile(0.5)
            assert np.isnan(res)
 
            res = s.quantile([0.5])
            tm.assert_series_equal(res, Series([np.nan], index=[0.5]))
 
            res = s.quantile([0.2, 0.3])
            tm.assert_series_equal(res, Series([np.nan, np.nan], index=[0.2, 0.3]))
 
    @pytest.mark.parametrize(
        "case",
        [
            [
                Timestamp("2011-01-01"),
                Timestamp("2011-01-02"),
                Timestamp("2011-01-03"),
            ],
            [
                Timestamp("2011-01-01", tz="US/Eastern"),
                Timestamp("2011-01-02", tz="US/Eastern"),
                Timestamp("2011-01-03", tz="US/Eastern"),
            ],
            [pd.Timedelta("1 days"), pd.Timedelta("2 days"), pd.Timedelta("3 days")],
            # NaT
            [
                Timestamp("2011-01-01"),
                Timestamp("2011-01-02"),
                Timestamp("2011-01-03"),
                pd.NaT,
            ],
            [
                Timestamp("2011-01-01", tz="US/Eastern"),
                Timestamp("2011-01-02", tz="US/Eastern"),
                Timestamp("2011-01-03", tz="US/Eastern"),
                pd.NaT,
            ],
            [
                pd.Timedelta("1 days"),
                pd.Timedelta("2 days"),
                pd.Timedelta("3 days"),
                pd.NaT,
            ],
        ],
    )
    def test_quantile_box(self, case):
        s = Series(case, name="XXX")
        res = s.quantile(0.5)
        assert res == case[1]
 
        res = s.quantile([0.5])
        exp = Series([case[1]], index=[0.5], name="XXX")
        tm.assert_series_equal(res, exp)
 
    def test_datetime_timedelta_quantiles(self):
        # covers #9694
        assert pd.isna(Series([], dtype="M8[ns]").quantile(0.5))
        assert pd.isna(Series([], dtype="m8[ns]").quantile(0.5))
 
    def test_quantile_nat(self):
        res = Series([pd.NaT, pd.NaT]).quantile(0.5)
        assert res is pd.NaT
 
        res = Series([pd.NaT, pd.NaT]).quantile([0.5])
        tm.assert_series_equal(res, Series([pd.NaT], index=[0.5]))
 
    @pytest.mark.parametrize(
        "values, dtype",
        [([0, 0, 0, 1, 2, 3], "Sparse[int]"), ([0.0, None, 1.0, 2.0], "Sparse[float]")],
    )
    def test_quantile_sparse(self, values, dtype):
        ser = Series(values, dtype=dtype)
        result = ser.quantile([0.5])
        expected = Series(np.asarray(ser)).quantile([0.5]).astype("Sparse[float]")
        tm.assert_series_equal(result, expected)
 
    def test_quantile_empty(self):
        # floats
        s = Series([], dtype="float64")
 
        res = s.quantile(0.5)
        assert np.isnan(res)
 
        res = s.quantile([0.5])
        exp = Series([np.nan], index=[0.5])
        tm.assert_series_equal(res, exp)
 
        # int
        s = Series([], dtype="int64")
 
        res = s.quantile(0.5)
        assert np.isnan(res)
 
        res = s.quantile([0.5])
        exp = Series([np.nan], index=[0.5])
        tm.assert_series_equal(res, exp)
 
        # datetime
        s = Series([], dtype="datetime64[ns]")
 
        res = s.quantile(0.5)
        assert res is pd.NaT
 
        res = s.quantile([0.5])
        exp = Series([pd.NaT], index=[0.5])
        tm.assert_series_equal(res, exp)
 
    @pytest.mark.parametrize("dtype", [int, float, "Int64"])
    def test_quantile_dtypes(self, dtype):
        result = Series([1, 2, 3], dtype=dtype).quantile(np.arange(0, 1, 0.25))
        expected = Series(np.arange(1, 3, 0.5), index=np.arange(0, 1, 0.25))
        if dtype == "Int64":
            expected = expected.astype("Float64")
        tm.assert_series_equal(result, expected)
 
    def test_quantile_all_na(self, any_int_ea_dtype):
        # GH#50681
        ser = Series([pd.NA, pd.NA], dtype=any_int_ea_dtype)
        with tm.assert_produces_warning(None):
            result = ser.quantile([0.1, 0.5])
        expected = Series([pd.NA, pd.NA], dtype=any_int_ea_dtype, index=[0.1, 0.5])
        tm.assert_series_equal(result, expected)
 
    def test_quantile_dtype_size(self, any_int_ea_dtype):
        # GH#50681
        ser = Series([pd.NA, pd.NA, 1], dtype=any_int_ea_dtype)
        result = ser.quantile([0.1, 0.5])
        expected = Series([1, 1], dtype=any_int_ea_dtype, index=[0.1, 0.5])
        tm.assert_series_equal(result, expected)