zmc
2023-08-08 e792e9a60d958b93aef96050644f369feb25d61b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
from datetime import (
    datetime,
    timedelta,
)
from importlib import reload
import string
import sys
 
import numpy as np
import pytest
 
from pandas._libs.tslibs import iNaT
import pandas.util._test_decorators as td
 
from pandas import (
    NA,
    Categorical,
    CategoricalDtype,
    DatetimeTZDtype,
    Index,
    Interval,
    NaT,
    Series,
    Timedelta,
    Timestamp,
    cut,
    date_range,
)
import pandas._testing as tm
 
 
class TestAstypeAPI:
    def test_astype_unitless_dt64_raises(self):
        # GH#47844
        ser = Series(["1970-01-01", "1970-01-01", "1970-01-01"], dtype="datetime64[ns]")
        df = ser.to_frame()
 
        msg = "Casting to unit-less dtype 'datetime64' is not supported"
        with pytest.raises(TypeError, match=msg):
            ser.astype(np.datetime64)
        with pytest.raises(TypeError, match=msg):
            df.astype(np.datetime64)
        with pytest.raises(TypeError, match=msg):
            ser.astype("datetime64")
        with pytest.raises(TypeError, match=msg):
            df.astype("datetime64")
 
    def test_arg_for_errors_in_astype(self):
        # see GH#14878
        ser = Series([1, 2, 3])
 
        msg = (
            r"Expected value of kwarg 'errors' to be one of \['raise', "
            r"'ignore'\]\. Supplied value is 'False'"
        )
        with pytest.raises(ValueError, match=msg):
            ser.astype(np.float64, errors=False)
 
        ser.astype(np.int8, errors="raise")
 
    @pytest.mark.parametrize("dtype_class", [dict, Series])
    def test_astype_dict_like(self, dtype_class):
        # see GH#7271
        ser = Series(range(0, 10, 2), name="abc")
 
        dt1 = dtype_class({"abc": str})
        result = ser.astype(dt1)
        expected = Series(["0", "2", "4", "6", "8"], name="abc")
        tm.assert_series_equal(result, expected)
 
        dt2 = dtype_class({"abc": "float64"})
        result = ser.astype(dt2)
        expected = Series([0.0, 2.0, 4.0, 6.0, 8.0], dtype="float64", name="abc")
        tm.assert_series_equal(result, expected)
 
        dt3 = dtype_class({"abc": str, "def": str})
        msg = (
            "Only the Series name can be used for the key in Series dtype "
            r"mappings\."
        )
        with pytest.raises(KeyError, match=msg):
            ser.astype(dt3)
 
        dt4 = dtype_class({0: str})
        with pytest.raises(KeyError, match=msg):
            ser.astype(dt4)
 
        # GH#16717
        # if dtypes provided is empty, it should error
        if dtype_class is Series:
            dt5 = dtype_class({}, dtype=object)
        else:
            dt5 = dtype_class({})
 
        with pytest.raises(KeyError, match=msg):
            ser.astype(dt5)
 
 
class TestAstype:
    def test_astype_mixed_object_to_dt64tz(self):
        # pre-2.0 this raised ValueError bc of tz mismatch
        # xref GH#32581
        ts = Timestamp("2016-01-04 05:06:07", tz="US/Pacific")
        ts2 = ts.tz_convert("Asia/Tokyo")
 
        ser = Series([ts, ts2], dtype=object)
        res = ser.astype("datetime64[ns, Europe/Brussels]")
        expected = Series(
            [ts.tz_convert("Europe/Brussels"), ts2.tz_convert("Europe/Brussels")],
            dtype="datetime64[ns, Europe/Brussels]",
        )
        tm.assert_series_equal(res, expected)
 
    @pytest.mark.parametrize("dtype", np.typecodes["All"])
    def test_astype_empty_constructor_equality(self, dtype):
        # see GH#15524
 
        if dtype not in (
            "S",
            "V",  # poor support (if any) currently
            "M",
            "m",  # Generic timestamps raise a ValueError. Already tested.
        ):
            init_empty = Series([], dtype=dtype)
            as_type_empty = Series([]).astype(dtype)
            tm.assert_series_equal(init_empty, as_type_empty)
 
    @pytest.mark.parametrize("dtype", [str, np.str_])
    @pytest.mark.parametrize(
        "series",
        [
            Series([string.digits * 10, tm.rands(63), tm.rands(64), tm.rands(1000)]),
            Series([string.digits * 10, tm.rands(63), tm.rands(64), np.nan, 1.0]),
        ],
    )
    def test_astype_str_map(self, dtype, series):
        # see GH#4405
        result = series.astype(dtype)
        expected = series.map(str)
        tm.assert_series_equal(result, expected)
 
    def test_astype_float_to_period(self):
        result = Series([np.nan]).astype("period[D]")
        expected = Series([NaT], dtype="period[D]")
        tm.assert_series_equal(result, expected)
 
    def test_astype_no_pandas_dtype(self):
        # https://github.com/pandas-dev/pandas/pull/24866
        ser = Series([1, 2], dtype="int64")
        # Don't have PandasDtype in the public API, so we use `.array.dtype`,
        # which is a PandasDtype.
        result = ser.astype(ser.array.dtype)
        tm.assert_series_equal(result, ser)
 
    @pytest.mark.parametrize("dtype", [np.datetime64, np.timedelta64])
    def test_astype_generic_timestamp_no_frequency(self, dtype, request):
        # see GH#15524, GH#15987
        data = [1]
        ser = Series(data)
 
        if np.dtype(dtype).name not in ["timedelta64", "datetime64"]:
            mark = pytest.mark.xfail(reason="GH#33890 Is assigned ns unit")
            request.node.add_marker(mark)
 
        msg = (
            rf"The '{dtype.__name__}' dtype has no unit\. "
            rf"Please pass in '{dtype.__name__}\[ns\]' instead."
        )
        with pytest.raises(ValueError, match=msg):
            ser.astype(dtype)
 
    def test_astype_dt64_to_str(self):
        # GH#10442 : testing astype(str) is correct for Series/DatetimeIndex
        dti = date_range("2012-01-01", periods=3)
        result = Series(dti).astype(str)
        expected = Series(["2012-01-01", "2012-01-02", "2012-01-03"], dtype=object)
        tm.assert_series_equal(result, expected)
 
    def test_astype_dt64tz_to_str(self):
        # GH#10442 : testing astype(str) is correct for Series/DatetimeIndex
        dti_tz = date_range("2012-01-01", periods=3, tz="US/Eastern")
        result = Series(dti_tz).astype(str)
        expected = Series(
            [
                "2012-01-01 00:00:00-05:00",
                "2012-01-02 00:00:00-05:00",
                "2012-01-03 00:00:00-05:00",
            ],
            dtype=object,
        )
        tm.assert_series_equal(result, expected)
 
    def test_astype_datetime(self):
        ser = Series(iNaT, dtype="M8[ns]", index=range(5))
 
        ser = ser.astype("O")
        assert ser.dtype == np.object_
 
        ser = Series([datetime(2001, 1, 2, 0, 0)])
 
        ser = ser.astype("O")
        assert ser.dtype == np.object_
 
        ser = Series([datetime(2001, 1, 2, 0, 0) for i in range(3)])
 
        ser[1] = np.nan
        assert ser.dtype == "M8[ns]"
 
        ser = ser.astype("O")
        assert ser.dtype == np.object_
 
    def test_astype_datetime64tz(self):
        ser = Series(date_range("20130101", periods=3, tz="US/Eastern"))
 
        # astype
        result = ser.astype(object)
        expected = Series(ser.astype(object), dtype=object)
        tm.assert_series_equal(result, expected)
 
        result = Series(ser.values).dt.tz_localize("UTC").dt.tz_convert(ser.dt.tz)
        tm.assert_series_equal(result, ser)
 
        # astype - object, preserves on construction
        result = Series(ser.astype(object))
        expected = ser.astype(object)
        tm.assert_series_equal(result, expected)
 
        # astype - datetime64[ns, tz]
        msg = "Cannot use .astype to convert from timezone-naive"
        with pytest.raises(TypeError, match=msg):
            # dt64->dt64tz astype deprecated
            Series(ser.values).astype("datetime64[ns, US/Eastern]")
 
        with pytest.raises(TypeError, match=msg):
            # dt64->dt64tz astype deprecated
            Series(ser.values).astype(ser.dtype)
 
        result = ser.astype("datetime64[ns, CET]")
        expected = Series(date_range("20130101 06:00:00", periods=3, tz="CET"))
        tm.assert_series_equal(result, expected)
 
    def test_astype_str_cast_dt64(self):
        # see GH#9757
        ts = Series([Timestamp("2010-01-04 00:00:00")])
        res = ts.astype(str)
 
        expected = Series(["2010-01-04"])
        tm.assert_series_equal(res, expected)
 
        ts = Series([Timestamp("2010-01-04 00:00:00", tz="US/Eastern")])
        res = ts.astype(str)
 
        expected = Series(["2010-01-04 00:00:00-05:00"])
        tm.assert_series_equal(res, expected)
 
    def test_astype_str_cast_td64(self):
        # see GH#9757
 
        td = Series([Timedelta(1, unit="d")])
        ser = td.astype(str)
 
        expected = Series(["1 days"])
        tm.assert_series_equal(ser, expected)
 
    def test_dt64_series_astype_object(self):
        dt64ser = Series(date_range("20130101", periods=3))
        result = dt64ser.astype(object)
        assert isinstance(result.iloc[0], datetime)
        assert result.dtype == np.object_
 
    def test_td64_series_astype_object(self):
        tdser = Series(["59 Days", "59 Days", "NaT"], dtype="timedelta64[ns]")
        result = tdser.astype(object)
        assert isinstance(result.iloc[0], timedelta)
        assert result.dtype == np.object_
 
    @pytest.mark.parametrize(
        "data, dtype",
        [
            (["x", "y", "z"], "string[python]"),
            pytest.param(
                ["x", "y", "z"],
                "string[pyarrow]",
                marks=td.skip_if_no("pyarrow"),
            ),
            (["x", "y", "z"], "category"),
            (3 * [Timestamp("2020-01-01", tz="UTC")], None),
            (3 * [Interval(0, 1)], None),
        ],
    )
    @pytest.mark.parametrize("errors", ["raise", "ignore"])
    def test_astype_ignores_errors_for_extension_dtypes(self, data, dtype, errors):
        # https://github.com/pandas-dev/pandas/issues/35471
        ser = Series(data, dtype=dtype)
        if errors == "ignore":
            expected = ser
            result = ser.astype(float, errors="ignore")
            tm.assert_series_equal(result, expected)
        else:
            msg = "(Cannot cast)|(could not convert)"
            with pytest.raises((ValueError, TypeError), match=msg):
                ser.astype(float, errors=errors)
 
    @pytest.mark.parametrize("dtype", [np.float16, np.float32, np.float64])
    def test_astype_from_float_to_str(self, dtype):
        # https://github.com/pandas-dev/pandas/issues/36451
        ser = Series([0.1], dtype=dtype)
        result = ser.astype(str)
        expected = Series(["0.1"])
        tm.assert_series_equal(result, expected)
 
    @pytest.mark.parametrize(
        "value, string_value",
        [
            (None, "None"),
            (np.nan, "nan"),
            (NA, "<NA>"),
        ],
    )
    def test_astype_to_str_preserves_na(self, value, string_value):
        # https://github.com/pandas-dev/pandas/issues/36904
        ser = Series(["a", "b", value], dtype=object)
        result = ser.astype(str)
        expected = Series(["a", "b", string_value], dtype=object)
        tm.assert_series_equal(result, expected)
 
    @pytest.mark.parametrize("dtype", ["float32", "float64", "int64", "int32"])
    def test_astype(self, dtype):
        ser = Series(np.random.randn(5), name="foo")
        as_typed = ser.astype(dtype)
 
        assert as_typed.dtype == dtype
        assert as_typed.name == ser.name
 
    @pytest.mark.parametrize("value", [np.nan, np.inf])
    @pytest.mark.parametrize("dtype", [np.int32, np.int64])
    def test_astype_cast_nan_inf_int(self, dtype, value):
        # gh-14265: check NaN and inf raise error when converting to int
        msg = "Cannot convert non-finite values \\(NA or inf\\) to integer"
        ser = Series([value])
 
        with pytest.raises(ValueError, match=msg):
            ser.astype(dtype)
 
    @pytest.mark.parametrize("dtype", [int, np.int8, np.int64])
    def test_astype_cast_object_int_fail(self, dtype):
        arr = Series(["car", "house", "tree", "1"])
        msg = r"invalid literal for int\(\) with base 10: 'car'"
        with pytest.raises(ValueError, match=msg):
            arr.astype(dtype)
 
    def test_astype_float_to_uint_negatives_raise(
        self, float_numpy_dtype, any_unsigned_int_numpy_dtype
    ):
        # GH#45151 We don't cast negative numbers to nonsense values
        # TODO: same for EA float/uint dtypes, signed integers?
        arr = np.arange(5).astype(float_numpy_dtype) - 3  # includes negatives
        ser = Series(arr)
 
        msg = "Cannot losslessly cast from .* to .*"
        with pytest.raises(ValueError, match=msg):
            ser.astype(any_unsigned_int_numpy_dtype)
 
        with pytest.raises(ValueError, match=msg):
            ser.to_frame().astype(any_unsigned_int_numpy_dtype)
 
        with pytest.raises(ValueError, match=msg):
            # We currently catch and re-raise in Index.astype
            Index(ser).astype(any_unsigned_int_numpy_dtype)
 
        with pytest.raises(ValueError, match=msg):
            ser.array.astype(any_unsigned_int_numpy_dtype)
 
    def test_astype_cast_object_int(self):
        arr = Series(["1", "2", "3", "4"], dtype=object)
        result = arr.astype(int)
 
        tm.assert_series_equal(result, Series(np.arange(1, 5)))
 
    def test_astype_unicode(self):
        # see GH#7758: A bit of magic is required to set
        # default encoding to utf-8
        digits = string.digits
        test_series = [
            Series([digits * 10, tm.rands(63), tm.rands(64), tm.rands(1000)]),
            Series(["データーサイエンス、お前はもう死んでいる"]),
        ]
 
        former_encoding = None
 
        if sys.getdefaultencoding() == "utf-8":
            # GH#45326 as of 2.0 Series.astype matches Index.astype by handling
            #  bytes with obj.decode() instead of str(obj)
            item = "野菜食べないとやばい"
            ser = Series([item.encode()])
            result = ser.astype("unicode")
            expected = Series([item])
            tm.assert_series_equal(result, expected)
 
        for ser in test_series:
            res = ser.astype("unicode")
            expec = ser.map(str)
            tm.assert_series_equal(res, expec)
 
        # Restore the former encoding
        if former_encoding is not None and former_encoding != "utf-8":
            reload(sys)
            sys.setdefaultencoding(former_encoding)
 
    def test_astype_bytes(self):
        # GH#39474
        result = Series(["foo", "bar", "baz"]).astype(bytes)
        assert result.dtypes == np.dtype("S3")
 
    def test_astype_nan_to_bool(self):
        # GH#43018
        ser = Series(np.nan, dtype="object")
        result = ser.astype("bool")
        expected = Series(True, dtype="bool")
        tm.assert_series_equal(result, expected)
 
    @pytest.mark.parametrize(
        "dtype",
        tm.ALL_INT_EA_DTYPES + tm.FLOAT_EA_DTYPES,
    )
    def test_astype_ea_to_datetimetzdtype(self, dtype):
        # GH37553
        ser = Series([4, 0, 9], dtype=dtype)
        result = ser.astype(DatetimeTZDtype(tz="US/Pacific"))
 
        expected = Series(
            {
                0: Timestamp("1969-12-31 16:00:00.000000004-08:00", tz="US/Pacific"),
                1: Timestamp("1969-12-31 16:00:00.000000000-08:00", tz="US/Pacific"),
                2: Timestamp("1969-12-31 16:00:00.000000009-08:00", tz="US/Pacific"),
            }
        )
 
        tm.assert_series_equal(result, expected)
 
    def test_astype_retain_Attrs(self, any_numpy_dtype):
        # GH#44414
        ser = Series([0, 1, 2, 3])
        ser.attrs["Location"] = "Michigan"
 
        result = ser.astype(any_numpy_dtype).attrs
        expected = ser.attrs
 
        tm.assert_dict_equal(expected, result)
 
 
class TestAstypeString:
    @pytest.mark.parametrize(
        "data, dtype",
        [
            ([True, NA], "boolean"),
            (["A", NA], "category"),
            (["2020-10-10", "2020-10-10"], "datetime64[ns]"),
            (["2020-10-10", "2020-10-10", NaT], "datetime64[ns]"),
            (
                ["2012-01-01 00:00:00-05:00", NaT],
                "datetime64[ns, US/Eastern]",
            ),
            ([1, None], "UInt16"),
            (["1/1/2021", "2/1/2021"], "period[M]"),
            (["1/1/2021", "2/1/2021", NaT], "period[M]"),
            (["1 Day", "59 Days", NaT], "timedelta64[ns]"),
            # currently no way to parse IntervalArray from a list of strings
        ],
    )
    def test_astype_string_to_extension_dtype_roundtrip(
        self, data, dtype, request, nullable_string_dtype
    ):
        if dtype == "boolean" or (dtype == "timedelta64[ns]" and NaT in data):
            mark = pytest.mark.xfail(
                reason="TODO StringArray.astype() with missing values #GH40566"
            )
            request.node.add_marker(mark)
        # GH-40351
        ser = Series(data, dtype=dtype)
 
        # Note: just passing .astype(dtype) fails for dtype="category"
        #  with bc ser.dtype.categories will be object dtype whereas
        #  result.dtype.categories will have string dtype
        result = ser.astype(nullable_string_dtype).astype(ser.dtype)
        tm.assert_series_equal(result, ser)
 
 
class TestAstypeCategorical:
    def test_astype_categorical_to_other(self):
        cat = Categorical([f"{i} - {i + 499}" for i in range(0, 10000, 500)])
        ser = Series(np.random.RandomState(0).randint(0, 10000, 100)).sort_values()
        ser = cut(ser, range(0, 10500, 500), right=False, labels=cat)
 
        expected = ser
        tm.assert_series_equal(ser.astype("category"), expected)
        tm.assert_series_equal(ser.astype(CategoricalDtype()), expected)
        msg = r"Cannot cast object dtype to float64"
        with pytest.raises(ValueError, match=msg):
            ser.astype("float64")
 
        cat = Series(Categorical(["a", "b", "b", "a", "a", "c", "c", "c"]))
        exp = Series(["a", "b", "b", "a", "a", "c", "c", "c"])
        tm.assert_series_equal(cat.astype("str"), exp)
        s2 = Series(Categorical(["1", "2", "3", "4"]))
        exp2 = Series([1, 2, 3, 4]).astype("int")
        tm.assert_series_equal(s2.astype("int"), exp2)
 
        # object don't sort correctly, so just compare that we have the same
        # values
        def cmp(a, b):
            tm.assert_almost_equal(np.sort(np.unique(a)), np.sort(np.unique(b)))
 
        expected = Series(np.array(ser.values), name="value_group")
        cmp(ser.astype("object"), expected)
        cmp(ser.astype(np.object_), expected)
 
        # array conversion
        tm.assert_almost_equal(np.array(ser), np.array(ser.values))
 
        tm.assert_series_equal(ser.astype("category"), ser)
        tm.assert_series_equal(ser.astype(CategoricalDtype()), ser)
 
        roundtrip_expected = ser.cat.set_categories(
            ser.cat.categories.sort_values()
        ).cat.remove_unused_categories()
        result = ser.astype("object").astype("category")
        tm.assert_series_equal(result, roundtrip_expected)
        result = ser.astype("object").astype(CategoricalDtype())
        tm.assert_series_equal(result, roundtrip_expected)
 
    def test_astype_categorical_invalid_conversions(self):
        # invalid conversion (these are NOT a dtype)
        cat = Categorical([f"{i} - {i + 499}" for i in range(0, 10000, 500)])
        ser = Series(np.random.randint(0, 10000, 100)).sort_values()
        ser = cut(ser, range(0, 10500, 500), right=False, labels=cat)
 
        msg = (
            "dtype '<class 'pandas.core.arrays.categorical.Categorical'>' "
            "not understood"
        )
        with pytest.raises(TypeError, match=msg):
            ser.astype(Categorical)
        with pytest.raises(TypeError, match=msg):
            ser.astype("object").astype(Categorical)
 
    def test_astype_categoricaldtype(self):
        ser = Series(["a", "b", "a"])
        result = ser.astype(CategoricalDtype(["a", "b"], ordered=True))
        expected = Series(Categorical(["a", "b", "a"], ordered=True))
        tm.assert_series_equal(result, expected)
 
        result = ser.astype(CategoricalDtype(["a", "b"], ordered=False))
        expected = Series(Categorical(["a", "b", "a"], ordered=False))
        tm.assert_series_equal(result, expected)
 
        result = ser.astype(CategoricalDtype(["a", "b", "c"], ordered=False))
        expected = Series(
            Categorical(["a", "b", "a"], categories=["a", "b", "c"], ordered=False)
        )
        tm.assert_series_equal(result, expected)
        tm.assert_index_equal(result.cat.categories, Index(["a", "b", "c"]))
 
    @pytest.mark.parametrize("name", [None, "foo"])
    @pytest.mark.parametrize("dtype_ordered", [True, False])
    @pytest.mark.parametrize("series_ordered", [True, False])
    def test_astype_categorical_to_categorical(
        self, name, dtype_ordered, series_ordered
    ):
        # GH#10696, GH#18593
        s_data = list("abcaacbab")
        s_dtype = CategoricalDtype(list("bac"), ordered=series_ordered)
        ser = Series(s_data, dtype=s_dtype, name=name)
 
        # unspecified categories
        dtype = CategoricalDtype(ordered=dtype_ordered)
        result = ser.astype(dtype)
        exp_dtype = CategoricalDtype(s_dtype.categories, dtype_ordered)
        expected = Series(s_data, name=name, dtype=exp_dtype)
        tm.assert_series_equal(result, expected)
 
        # different categories
        dtype = CategoricalDtype(list("adc"), dtype_ordered)
        result = ser.astype(dtype)
        expected = Series(s_data, name=name, dtype=dtype)
        tm.assert_series_equal(result, expected)
 
        if dtype_ordered is False:
            # not specifying ordered, so only test once
            expected = ser
            result = ser.astype("category")
            tm.assert_series_equal(result, expected)
 
    def test_astype_bool_missing_to_categorical(self):
        # GH-19182
        ser = Series([True, False, np.nan])
        assert ser.dtypes == np.object_
 
        result = ser.astype(CategoricalDtype(categories=[True, False]))
        expected = Series(Categorical([True, False, np.nan], categories=[True, False]))
        tm.assert_series_equal(result, expected)
 
    def test_astype_categories_raises(self):
        # deprecated GH#17636, removed in GH#27141
        ser = Series(["a", "b", "a"])
        with pytest.raises(TypeError, match="got an unexpected"):
            ser.astype("category", categories=["a", "b"], ordered=True)
 
    @pytest.mark.parametrize("items", [["a", "b", "c", "a"], [1, 2, 3, 1]])
    def test_astype_from_categorical(self, items):
        ser = Series(items)
        exp = Series(Categorical(items))
        res = ser.astype("category")
        tm.assert_series_equal(res, exp)
 
    def test_astype_from_categorical_with_keywords(self):
        # with keywords
        lst = ["a", "b", "c", "a"]
        ser = Series(lst)
        exp = Series(Categorical(lst, ordered=True))
        res = ser.astype(CategoricalDtype(None, ordered=True))
        tm.assert_series_equal(res, exp)
 
        exp = Series(Categorical(lst, categories=list("abcdef"), ordered=True))
        res = ser.astype(CategoricalDtype(list("abcdef"), ordered=True))
        tm.assert_series_equal(res, exp)
 
    def test_astype_timedelta64_with_np_nan(self):
        # GH45798
        result = Series([Timedelta(1), np.nan], dtype="timedelta64[ns]")
        expected = Series([Timedelta(1), NaT], dtype="timedelta64[ns]")
        tm.assert_series_equal(result, expected)