zmc
2023-08-08 e792e9a60d958b93aef96050644f369feb25d61b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
import datetime as dt
import hashlib
import os
import tempfile
import time
from warnings import (
    catch_warnings,
    simplefilter,
)
 
import numpy as np
import pytest
 
import pandas as pd
from pandas import (
    DataFrame,
    DatetimeIndex,
    Index,
    MultiIndex,
    Series,
    Timestamp,
    concat,
    date_range,
    timedelta_range,
)
import pandas._testing as tm
from pandas.tests.io.pytables.common import (
    _maybe_remove,
    ensure_clean_store,
    safe_close,
)
 
_default_compressor = "blosc"
 
from pandas.io.pytables import (
    HDFStore,
    read_hdf,
)
 
pytestmark = pytest.mark.single_cpu
 
 
def test_context(setup_path):
    with tm.ensure_clean(setup_path) as path:
        try:
            with HDFStore(path) as tbl:
                raise ValueError("blah")
        except ValueError:
            pass
    with tm.ensure_clean(setup_path) as path:
        with HDFStore(path) as tbl:
            tbl["a"] = tm.makeDataFrame()
            assert len(tbl) == 1
            assert type(tbl["a"]) == DataFrame
 
 
def test_no_track_times(tmp_path, setup_path):
    # GH 32682
    # enables to set track_times (see `pytables` `create_table` documentation)
 
    def checksum(filename, hash_factory=hashlib.md5, chunk_num_blocks=128):
        h = hash_factory()
        with open(filename, "rb") as f:
            for chunk in iter(lambda: f.read(chunk_num_blocks * h.block_size), b""):
                h.update(chunk)
        return h.digest()
 
    def create_h5_and_return_checksum(tmp_path, track_times):
        path = tmp_path / setup_path
        df = DataFrame({"a": [1]})
 
        with HDFStore(path, mode="w") as hdf:
            hdf.put(
                "table",
                df,
                format="table",
                data_columns=True,
                index=None,
                track_times=track_times,
            )
 
        return checksum(path)
 
    checksum_0_tt_false = create_h5_and_return_checksum(tmp_path, track_times=False)
    checksum_0_tt_true = create_h5_and_return_checksum(tmp_path, track_times=True)
 
    # sleep is necessary to create h5 with different creation time
    time.sleep(1)
 
    checksum_1_tt_false = create_h5_and_return_checksum(tmp_path, track_times=False)
    checksum_1_tt_true = create_h5_and_return_checksum(tmp_path, track_times=True)
 
    # checksums are the same if track_time = False
    assert checksum_0_tt_false == checksum_1_tt_false
 
    # checksums are NOT same if track_time = True
    assert checksum_0_tt_true != checksum_1_tt_true
 
 
def test_iter_empty(setup_path):
    with ensure_clean_store(setup_path) as store:
        # GH 12221
        assert list(store) == []
 
 
def test_repr(setup_path):
    with ensure_clean_store(setup_path) as store:
        repr(store)
        store.info()
        store["a"] = tm.makeTimeSeries()
        store["b"] = tm.makeStringSeries()
        store["c"] = tm.makeDataFrame()
 
        df = tm.makeDataFrame()
        df["obj1"] = "foo"
        df["obj2"] = "bar"
        df["bool1"] = df["A"] > 0
        df["bool2"] = df["B"] > 0
        df["bool3"] = True
        df["int1"] = 1
        df["int2"] = 2
        df["timestamp1"] = Timestamp("20010102")
        df["timestamp2"] = Timestamp("20010103")
        df["datetime1"] = dt.datetime(2001, 1, 2, 0, 0)
        df["datetime2"] = dt.datetime(2001, 1, 3, 0, 0)
        df.loc[df.index[3:6], ["obj1"]] = np.nan
        df = df._consolidate()
 
        with catch_warnings(record=True):
            simplefilter("ignore", pd.errors.PerformanceWarning)
            store["df"] = df
 
        # make a random group in hdf space
        store._handle.create_group(store._handle.root, "bah")
 
        assert store.filename in repr(store)
        assert store.filename in str(store)
        store.info()
 
    # storers
    with ensure_clean_store(setup_path) as store:
        df = tm.makeDataFrame()
        store.append("df", df)
 
        s = store.get_storer("df")
        repr(s)
        str(s)
 
 
def test_contains(setup_path):
    with ensure_clean_store(setup_path) as store:
        store["a"] = tm.makeTimeSeries()
        store["b"] = tm.makeDataFrame()
        store["foo/bar"] = tm.makeDataFrame()
        assert "a" in store
        assert "b" in store
        assert "c" not in store
        assert "foo/bar" in store
        assert "/foo/bar" in store
        assert "/foo/b" not in store
        assert "bar" not in store
 
        # gh-2694: tables.NaturalNameWarning
        with catch_warnings(record=True):
            store["node())"] = tm.makeDataFrame()
        assert "node())" in store
 
 
def test_versioning(setup_path):
    with ensure_clean_store(setup_path) as store:
        store["a"] = tm.makeTimeSeries()
        store["b"] = tm.makeDataFrame()
        df = tm.makeTimeDataFrame()
        _maybe_remove(store, "df1")
        store.append("df1", df[:10])
        store.append("df1", df[10:])
        assert store.root.a._v_attrs.pandas_version == "0.15.2"
        assert store.root.b._v_attrs.pandas_version == "0.15.2"
        assert store.root.df1._v_attrs.pandas_version == "0.15.2"
 
        # write a file and wipe its versioning
        _maybe_remove(store, "df2")
        store.append("df2", df)
 
        # this is an error because its table_type is appendable, but no
        # version info
        store.get_node("df2")._v_attrs.pandas_version = None
 
        msg = "'NoneType' object has no attribute 'startswith'"
 
        with pytest.raises(Exception, match=msg):
            store.select("df2")
 
 
@pytest.mark.parametrize(
    "where, expected",
    [
        (
            "/",
            {
                "": ({"first_group", "second_group"}, set()),
                "/first_group": (set(), {"df1", "df2"}),
                "/second_group": ({"third_group"}, {"df3", "s1"}),
                "/second_group/third_group": (set(), {"df4"}),
            },
        ),
        (
            "/second_group",
            {
                "/second_group": ({"third_group"}, {"df3", "s1"}),
                "/second_group/third_group": (set(), {"df4"}),
            },
        ),
    ],
)
def test_walk(where, expected):
    # GH10143
    objs = {
        "df1": DataFrame([1, 2, 3]),
        "df2": DataFrame([4, 5, 6]),
        "df3": DataFrame([6, 7, 8]),
        "df4": DataFrame([9, 10, 11]),
        "s1": Series([10, 9, 8]),
        # Next 3 items aren't pandas objects and should be ignored
        "a1": np.array([[1, 2, 3], [4, 5, 6]]),
        "tb1": np.array([(1, 2, 3), (4, 5, 6)], dtype="i,i,i"),
        "tb2": np.array([(7, 8, 9), (10, 11, 12)], dtype="i,i,i"),
    }
 
    with ensure_clean_store("walk_groups.hdf", mode="w") as store:
        store.put("/first_group/df1", objs["df1"])
        store.put("/first_group/df2", objs["df2"])
        store.put("/second_group/df3", objs["df3"])
        store.put("/second_group/s1", objs["s1"])
        store.put("/second_group/third_group/df4", objs["df4"])
        # Create non-pandas objects
        store._handle.create_array("/first_group", "a1", objs["a1"])
        store._handle.create_table("/first_group", "tb1", obj=objs["tb1"])
        store._handle.create_table("/second_group", "tb2", obj=objs["tb2"])
 
        assert len(list(store.walk(where=where))) == len(expected)
        for path, groups, leaves in store.walk(where=where):
            assert path in expected
            expected_groups, expected_frames = expected[path]
            assert expected_groups == set(groups)
            assert expected_frames == set(leaves)
            for leaf in leaves:
                frame_path = "/".join([path, leaf])
                obj = store.get(frame_path)
                if "df" in leaf:
                    tm.assert_frame_equal(obj, objs[leaf])
                else:
                    tm.assert_series_equal(obj, objs[leaf])
 
 
def test_getattr(setup_path):
    with ensure_clean_store(setup_path) as store:
        s = tm.makeTimeSeries()
        store["a"] = s
 
        # test attribute access
        result = store.a
        tm.assert_series_equal(result, s)
        result = getattr(store, "a")
        tm.assert_series_equal(result, s)
 
        df = tm.makeTimeDataFrame()
        store["df"] = df
        result = store.df
        tm.assert_frame_equal(result, df)
 
        # errors
        for x in ["d", "mode", "path", "handle", "complib"]:
            msg = f"'HDFStore' object has no attribute '{x}'"
            with pytest.raises(AttributeError, match=msg):
                getattr(store, x)
 
        # not stores
        for x in ["mode", "path", "handle", "complib"]:
            getattr(store, f"_{x}")
 
 
def test_store_dropna(tmp_path, setup_path):
    df_with_missing = DataFrame(
        {"col1": [0.0, np.nan, 2.0], "col2": [1.0, np.nan, np.nan]},
        index=list("abc"),
    )
    df_without_missing = DataFrame(
        {"col1": [0.0, 2.0], "col2": [1.0, np.nan]}, index=list("ac")
    )
 
    # # Test to make sure defaults are to not drop.
    # # Corresponding to Issue 9382
    path = tmp_path / setup_path
    df_with_missing.to_hdf(path, "df", format="table")
    reloaded = read_hdf(path, "df")
    tm.assert_frame_equal(df_with_missing, reloaded)
 
    path = tmp_path / setup_path
    df_with_missing.to_hdf(path, "df", format="table", dropna=False)
    reloaded = read_hdf(path, "df")
    tm.assert_frame_equal(df_with_missing, reloaded)
 
    path = tmp_path / setup_path
    df_with_missing.to_hdf(path, "df", format="table", dropna=True)
    reloaded = read_hdf(path, "df")
    tm.assert_frame_equal(df_without_missing, reloaded)
 
 
def test_to_hdf_with_min_itemsize(tmp_path, setup_path):
    path = tmp_path / setup_path
 
    # min_itemsize in index with to_hdf (GH 10381)
    df = tm.makeMixedDataFrame().set_index("C")
    df.to_hdf(path, "ss3", format="table", min_itemsize={"index": 6})
    # just make sure there is a longer string:
    df2 = df.copy().reset_index().assign(C="longer").set_index("C")
    df2.to_hdf(path, "ss3", append=True, format="table")
    tm.assert_frame_equal(read_hdf(path, "ss3"), concat([df, df2]))
 
    # same as above, with a Series
    df["B"].to_hdf(path, "ss4", format="table", min_itemsize={"index": 6})
    df2["B"].to_hdf(path, "ss4", append=True, format="table")
    tm.assert_series_equal(read_hdf(path, "ss4"), concat([df["B"], df2["B"]]))
 
 
@pytest.mark.parametrize("format", ["fixed", "table"])
def test_to_hdf_errors(tmp_path, format, setup_path):
    data = ["\ud800foo"]
    ser = Series(data, index=Index(data))
    path = tmp_path / setup_path
    # GH 20835
    ser.to_hdf(path, "table", format=format, errors="surrogatepass")
 
    result = read_hdf(path, "table", errors="surrogatepass")
    tm.assert_series_equal(result, ser)
 
 
def test_create_table_index(setup_path):
    with ensure_clean_store(setup_path) as store:
        with catch_warnings(record=True):
 
            def col(t, column):
                return getattr(store.get_storer(t).table.cols, column)
 
            # data columns
            df = tm.makeTimeDataFrame()
            df["string"] = "foo"
            df["string2"] = "bar"
            store.append("f", df, data_columns=["string", "string2"])
            assert col("f", "index").is_indexed is True
            assert col("f", "string").is_indexed is True
            assert col("f", "string2").is_indexed is True
 
            # specify index=columns
            store.append("f2", df, index=["string"], data_columns=["string", "string2"])
            assert col("f2", "index").is_indexed is False
            assert col("f2", "string").is_indexed is True
            assert col("f2", "string2").is_indexed is False
 
            # try to index a non-table
            _maybe_remove(store, "f2")
            store.put("f2", df)
            msg = "cannot create table index on a Fixed format store"
            with pytest.raises(TypeError, match=msg):
                store.create_table_index("f2")
 
 
def test_create_table_index_data_columns_argument(setup_path):
    # GH 28156
 
    with ensure_clean_store(setup_path) as store:
        with catch_warnings(record=True):
 
            def col(t, column):
                return getattr(store.get_storer(t).table.cols, column)
 
            # data columns
            df = tm.makeTimeDataFrame()
            df["string"] = "foo"
            df["string2"] = "bar"
            store.append("f", df, data_columns=["string"])
            assert col("f", "index").is_indexed is True
            assert col("f", "string").is_indexed is True
 
            msg = "'Cols' object has no attribute 'string2'"
            with pytest.raises(AttributeError, match=msg):
                col("f", "string2").is_indexed
 
            # try to index a col which isn't a data_column
            msg = (
                "column string2 is not a data_column.\n"
                "In order to read column string2 you must reload the dataframe \n"
                "into HDFStore and include string2 with the data_columns argument."
            )
            with pytest.raises(AttributeError, match=msg):
                store.create_table_index("f", columns=["string2"])
 
 
def test_mi_data_columns(setup_path):
    # GH 14435
    idx = MultiIndex.from_arrays(
        [date_range("2000-01-01", periods=5), range(5)], names=["date", "id"]
    )
    df = DataFrame({"a": [1.1, 1.2, 1.3, 1.4, 1.5]}, index=idx)
 
    with ensure_clean_store(setup_path) as store:
        store.append("df", df, data_columns=True)
 
        actual = store.select("df", where="id == 1")
        expected = df.iloc[[1], :]
        tm.assert_frame_equal(actual, expected)
 
 
def test_table_mixed_dtypes(setup_path):
    # frame
    df = tm.makeDataFrame()
    df["obj1"] = "foo"
    df["obj2"] = "bar"
    df["bool1"] = df["A"] > 0
    df["bool2"] = df["B"] > 0
    df["bool3"] = True
    df["int1"] = 1
    df["int2"] = 2
    df["timestamp1"] = Timestamp("20010102")
    df["timestamp2"] = Timestamp("20010103")
    df["datetime1"] = dt.datetime(2001, 1, 2, 0, 0)
    df["datetime2"] = dt.datetime(2001, 1, 3, 0, 0)
    df.loc[df.index[3:6], ["obj1"]] = np.nan
    df = df._consolidate()
 
    with ensure_clean_store(setup_path) as store:
        store.append("df1_mixed", df)
        tm.assert_frame_equal(store.select("df1_mixed"), df)
 
 
def test_calendar_roundtrip_issue(setup_path):
    # 8591
    # doc example from tseries holiday section
    weekmask_egypt = "Sun Mon Tue Wed Thu"
    holidays = [
        "2012-05-01",
        dt.datetime(2013, 5, 1),
        np.datetime64("2014-05-01"),
    ]
    bday_egypt = pd.offsets.CustomBusinessDay(
        holidays=holidays, weekmask=weekmask_egypt
    )
    mydt = dt.datetime(2013, 4, 30)
    dts = date_range(mydt, periods=5, freq=bday_egypt)
 
    s = Series(dts.weekday, dts).map(Series("Mon Tue Wed Thu Fri Sat Sun".split()))
 
    with ensure_clean_store(setup_path) as store:
        store.put("fixed", s)
        result = store.select("fixed")
        tm.assert_series_equal(result, s)
 
        store.append("table", s)
        result = store.select("table")
        tm.assert_series_equal(result, s)
 
 
def test_remove(setup_path):
    with ensure_clean_store(setup_path) as store:
        ts = tm.makeTimeSeries()
        df = tm.makeDataFrame()
        store["a"] = ts
        store["b"] = df
        _maybe_remove(store, "a")
        assert len(store) == 1
        tm.assert_frame_equal(df, store["b"])
 
        _maybe_remove(store, "b")
        assert len(store) == 0
 
        # nonexistence
        with pytest.raises(
            KeyError, match="'No object named a_nonexistent_store in the file'"
        ):
            store.remove("a_nonexistent_store")
 
        # pathing
        store["a"] = ts
        store["b/foo"] = df
        _maybe_remove(store, "foo")
        _maybe_remove(store, "b/foo")
        assert len(store) == 1
 
        store["a"] = ts
        store["b/foo"] = df
        _maybe_remove(store, "b")
        assert len(store) == 1
 
        # __delitem__
        store["a"] = ts
        store["b"] = df
        del store["a"]
        del store["b"]
        assert len(store) == 0
 
 
def test_same_name_scoping(setup_path):
    with ensure_clean_store(setup_path) as store:
        df = DataFrame(np.random.randn(20, 2), index=date_range("20130101", periods=20))
        store.put("df", df, format="table")
        expected = df[df.index > Timestamp("20130105")]
 
        result = store.select("df", "index>datetime.datetime(2013,1,5)")
        tm.assert_frame_equal(result, expected)
 
        # changes what 'datetime' points to in the namespace where
        #  'select' does the lookup
 
        # technically an error, but allow it
        result = store.select("df", "index>datetime.datetime(2013,1,5)")
        tm.assert_frame_equal(result, expected)
 
        result = store.select("df", "index>datetime(2013,1,5)")
        tm.assert_frame_equal(result, expected)
 
 
def test_store_index_name(setup_path):
    df = tm.makeDataFrame()
    df.index.name = "foo"
 
    with ensure_clean_store(setup_path) as store:
        store["frame"] = df
        recons = store["frame"]
        tm.assert_frame_equal(recons, df)
 
 
@pytest.mark.parametrize("table_format", ["table", "fixed"])
def test_store_index_name_numpy_str(tmp_path, table_format, setup_path):
    # GH #13492
    idx = Index(
        pd.to_datetime([dt.date(2000, 1, 1), dt.date(2000, 1, 2)]),
        name="cols\u05d2",
    )
    idx1 = Index(
        pd.to_datetime([dt.date(2010, 1, 1), dt.date(2010, 1, 2)]),
        name="rows\u05d0",
    )
    df = DataFrame(np.arange(4).reshape(2, 2), columns=idx, index=idx1)
 
    # This used to fail, returning numpy strings instead of python strings.
    path = tmp_path / setup_path
    df.to_hdf(path, "df", format=table_format)
    df2 = read_hdf(path, "df")
 
    tm.assert_frame_equal(df, df2, check_names=True)
 
    assert type(df2.index.name) == str
    assert type(df2.columns.name) == str
 
 
def test_store_series_name(setup_path):
    df = tm.makeDataFrame()
    series = df["A"]
 
    with ensure_clean_store(setup_path) as store:
        store["series"] = series
        recons = store["series"]
        tm.assert_series_equal(recons, series)
 
 
def test_overwrite_node(setup_path):
    with ensure_clean_store(setup_path) as store:
        store["a"] = tm.makeTimeDataFrame()
        ts = tm.makeTimeSeries()
        store["a"] = ts
 
        tm.assert_series_equal(store["a"], ts)
 
 
def test_coordinates(setup_path):
    df = tm.makeTimeDataFrame()
 
    with ensure_clean_store(setup_path) as store:
        _maybe_remove(store, "df")
        store.append("df", df)
 
        # all
        c = store.select_as_coordinates("df")
        assert (c.values == np.arange(len(df.index))).all()
 
        # get coordinates back & test vs frame
        _maybe_remove(store, "df")
 
        df = DataFrame({"A": range(5), "B": range(5)})
        store.append("df", df)
        c = store.select_as_coordinates("df", ["index<3"])
        assert (c.values == np.arange(3)).all()
        result = store.select("df", where=c)
        expected = df.loc[0:2, :]
        tm.assert_frame_equal(result, expected)
 
        c = store.select_as_coordinates("df", ["index>=3", "index<=4"])
        assert (c.values == np.arange(2) + 3).all()
        result = store.select("df", where=c)
        expected = df.loc[3:4, :]
        tm.assert_frame_equal(result, expected)
        assert isinstance(c, Index)
 
        # multiple tables
        _maybe_remove(store, "df1")
        _maybe_remove(store, "df2")
        df1 = tm.makeTimeDataFrame()
        df2 = tm.makeTimeDataFrame().rename(columns="{}_2".format)
        store.append("df1", df1, data_columns=["A", "B"])
        store.append("df2", df2)
 
        c = store.select_as_coordinates("df1", ["A>0", "B>0"])
        df1_result = store.select("df1", c)
        df2_result = store.select("df2", c)
        result = concat([df1_result, df2_result], axis=1)
 
        expected = concat([df1, df2], axis=1)
        expected = expected[(expected.A > 0) & (expected.B > 0)]
        tm.assert_frame_equal(result, expected, check_freq=False)
        # FIXME: 2021-01-18 on some (mostly windows) builds we get freq=None
        #  but expect freq="18B"
 
    # pass array/mask as the coordinates
    with ensure_clean_store(setup_path) as store:
        df = DataFrame(
            np.random.randn(1000, 2), index=date_range("20000101", periods=1000)
        )
        store.append("df", df)
        c = store.select_column("df", "index")
        where = c[DatetimeIndex(c).month == 5].index
        expected = df.iloc[where]
 
        # locations
        result = store.select("df", where=where)
        tm.assert_frame_equal(result, expected)
 
        # boolean
        result = store.select("df", where=where)
        tm.assert_frame_equal(result, expected)
 
        # invalid
        msg = (
            "where must be passed as a string, PyTablesExpr, "
            "or list-like of PyTablesExpr"
        )
        with pytest.raises(TypeError, match=msg):
            store.select("df", where=np.arange(len(df), dtype="float64"))
 
        with pytest.raises(TypeError, match=msg):
            store.select("df", where=np.arange(len(df) + 1))
 
        with pytest.raises(TypeError, match=msg):
            store.select("df", where=np.arange(len(df)), start=5)
 
        with pytest.raises(TypeError, match=msg):
            store.select("df", where=np.arange(len(df)), start=5, stop=10)
 
        # selection with filter
        selection = date_range("20000101", periods=500)
        result = store.select("df", where="index in selection")
        expected = df[df.index.isin(selection)]
        tm.assert_frame_equal(result, expected)
 
        # list
        df = DataFrame(np.random.randn(10, 2))
        store.append("df2", df)
        result = store.select("df2", where=[0, 3, 5])
        expected = df.iloc[[0, 3, 5]]
        tm.assert_frame_equal(result, expected)
 
        # boolean
        where = [True] * 10
        where[-2] = False
        result = store.select("df2", where=where)
        expected = df.loc[where]
        tm.assert_frame_equal(result, expected)
 
        # start/stop
        result = store.select("df2", start=5, stop=10)
        expected = df[5:10]
        tm.assert_frame_equal(result, expected)
 
 
def test_start_stop_table(setup_path):
    with ensure_clean_store(setup_path) as store:
        # table
        df = DataFrame({"A": np.random.rand(20), "B": np.random.rand(20)})
        store.append("df", df)
 
        result = store.select("df", "columns=['A']", start=0, stop=5)
        expected = df.loc[0:4, ["A"]]
        tm.assert_frame_equal(result, expected)
 
        # out of range
        result = store.select("df", "columns=['A']", start=30, stop=40)
        assert len(result) == 0
        expected = df.loc[30:40, ["A"]]
        tm.assert_frame_equal(result, expected)
 
 
def test_start_stop_multiple(setup_path):
    # GH 16209
    with ensure_clean_store(setup_path) as store:
        df = DataFrame({"foo": [1, 2], "bar": [1, 2]})
 
        store.append_to_multiple(
            {"selector": ["foo"], "data": None}, df, selector="selector"
        )
        result = store.select_as_multiple(
            ["selector", "data"], selector="selector", start=0, stop=1
        )
        expected = df.loc[[0], ["foo", "bar"]]
        tm.assert_frame_equal(result, expected)
 
 
def test_start_stop_fixed(setup_path):
    with ensure_clean_store(setup_path) as store:
        # fixed, GH 8287
        df = DataFrame(
            {"A": np.random.rand(20), "B": np.random.rand(20)},
            index=date_range("20130101", periods=20),
        )
        store.put("df", df)
 
        result = store.select("df", start=0, stop=5)
        expected = df.iloc[0:5, :]
        tm.assert_frame_equal(result, expected)
 
        result = store.select("df", start=5, stop=10)
        expected = df.iloc[5:10, :]
        tm.assert_frame_equal(result, expected)
 
        # out of range
        result = store.select("df", start=30, stop=40)
        expected = df.iloc[30:40, :]
        tm.assert_frame_equal(result, expected)
 
        # series
        s = df.A
        store.put("s", s)
        result = store.select("s", start=0, stop=5)
        expected = s.iloc[0:5]
        tm.assert_series_equal(result, expected)
 
        result = store.select("s", start=5, stop=10)
        expected = s.iloc[5:10]
        tm.assert_series_equal(result, expected)
 
        # sparse; not implemented
        df = tm.makeDataFrame()
        df.iloc[3:5, 1:3] = np.nan
        df.iloc[8:10, -2] = np.nan
 
 
def test_select_filter_corner(setup_path):
    df = DataFrame(np.random.randn(50, 100))
    df.index = [f"{c:3d}" for c in df.index]
    df.columns = [f"{c:3d}" for c in df.columns]
 
    with ensure_clean_store(setup_path) as store:
        store.put("frame", df, format="table")
 
        crit = "columns=df.columns[:75]"
        result = store.select("frame", [crit])
        tm.assert_frame_equal(result, df.loc[:, df.columns[:75]])
 
        crit = "columns=df.columns[:75:2]"
        result = store.select("frame", [crit])
        tm.assert_frame_equal(result, df.loc[:, df.columns[:75:2]])
 
 
def test_path_pathlib():
    df = tm.makeDataFrame()
 
    result = tm.round_trip_pathlib(
        lambda p: df.to_hdf(p, "df"), lambda p: read_hdf(p, "df")
    )
    tm.assert_frame_equal(df, result)
 
 
@pytest.mark.parametrize("start, stop", [(0, 2), (1, 2), (None, None)])
def test_contiguous_mixed_data_table(start, stop, setup_path):
    # GH 17021
    df = DataFrame(
        {
            "a": Series([20111010, 20111011, 20111012]),
            "b": Series(["ab", "cd", "ab"]),
        }
    )
 
    with ensure_clean_store(setup_path) as store:
        store.append("test_dataset", df)
 
        result = store.select("test_dataset", start=start, stop=stop)
        tm.assert_frame_equal(df[start:stop], result)
 
 
def test_path_pathlib_hdfstore():
    df = tm.makeDataFrame()
 
    def writer(path):
        with HDFStore(path) as store:
            df.to_hdf(store, "df")
 
    def reader(path):
        with HDFStore(path) as store:
            return read_hdf(store, "df")
 
    result = tm.round_trip_pathlib(writer, reader)
    tm.assert_frame_equal(df, result)
 
 
def test_pickle_path_localpath():
    df = tm.makeDataFrame()
    result = tm.round_trip_pathlib(
        lambda p: df.to_hdf(p, "df"), lambda p: read_hdf(p, "df")
    )
    tm.assert_frame_equal(df, result)
 
 
def test_path_localpath_hdfstore():
    df = tm.makeDataFrame()
 
    def writer(path):
        with HDFStore(path) as store:
            df.to_hdf(store, "df")
 
    def reader(path):
        with HDFStore(path) as store:
            return read_hdf(store, "df")
 
    result = tm.round_trip_localpath(writer, reader)
    tm.assert_frame_equal(df, result)
 
 
def test_copy():
    with catch_warnings(record=True):
 
        def do_copy(f, new_f=None, keys=None, propindexes=True, **kwargs):
            if new_f is None:
                fd, new_f = tempfile.mkstemp()
 
            try:
                store = HDFStore(f, "r")
                tstore = store.copy(new_f, keys=keys, propindexes=propindexes, **kwargs)
 
                # check keys
                if keys is None:
                    keys = store.keys()
                assert set(keys) == set(tstore.keys())
 
                # check indices & nrows
                for k in tstore.keys():
                    if tstore.get_storer(k).is_table:
                        new_t = tstore.get_storer(k)
                        orig_t = store.get_storer(k)
 
                        assert orig_t.nrows == new_t.nrows
 
                        # check propindixes
                        if propindexes:
                            for a in orig_t.axes:
                                if a.is_indexed:
                                    assert new_t[a.name].is_indexed
 
            finally:
                safe_close(store)
                safe_close(tstore)
                try:
                    os.close(fd)
                except (OSError, ValueError):
                    pass
                os.remove(new_f)
 
        # new table
        df = tm.makeDataFrame()
 
        with tm.ensure_clean() as path:
            with HDFStore(path) as st:
                st.append("df", df, data_columns=["A"])
            do_copy(f=path)
            do_copy(f=path, propindexes=False)
 
 
def test_duplicate_column_name(tmp_path, setup_path):
    df = DataFrame(columns=["a", "a"], data=[[0, 0]])
 
    path = tmp_path / setup_path
    msg = "Columns index has to be unique for fixed format"
    with pytest.raises(ValueError, match=msg):
        df.to_hdf(path, "df", format="fixed")
 
    df.to_hdf(path, "df", format="table")
    other = read_hdf(path, "df")
 
    tm.assert_frame_equal(df, other)
    assert df.equals(other)
    assert other.equals(df)
 
 
def test_preserve_timedeltaindex_type(setup_path):
    # GH9635
    df = DataFrame(np.random.normal(size=(10, 5)))
    df.index = timedelta_range(start="0s", periods=10, freq="1s", name="example")
 
    with ensure_clean_store(setup_path) as store:
        store["df"] = df
        tm.assert_frame_equal(store["df"], df)
 
 
def test_columns_multiindex_modified(tmp_path, setup_path):
    # BUG: 7212
 
    df = DataFrame(np.random.rand(4, 5), index=list("abcd"), columns=list("ABCDE"))
    df.index.name = "letters"
    df = df.set_index(keys="E", append=True)
 
    data_columns = df.index.names + df.columns.tolist()
    path = tmp_path / setup_path
    df.to_hdf(
        path,
        "df",
        mode="a",
        append=True,
        data_columns=data_columns,
        index=False,
    )
    cols2load = list("BCD")
    cols2load_original = list(cols2load)
    # GH#10055 make sure read_hdf call does not alter cols2load inplace
    read_hdf(path, "df", columns=cols2load)
    assert cols2load_original == cols2load
 
 
def test_to_hdf_with_object_column_names(tmp_path, setup_path):
    # GH9057
 
    types_should_fail = [
        tm.makeIntIndex,
        tm.makeFloatIndex,
        tm.makeDateIndex,
        tm.makeTimedeltaIndex,
        tm.makePeriodIndex,
    ]
    types_should_run = [
        tm.makeStringIndex,
        tm.makeCategoricalIndex,
    ]
 
    for index in types_should_fail:
        df = DataFrame(np.random.randn(10, 2), columns=index(2))
        path = tmp_path / setup_path
        with catch_warnings(record=True):
            msg = "cannot have non-object label DataIndexableCol"
            with pytest.raises(ValueError, match=msg):
                df.to_hdf(path, "df", format="table", data_columns=True)
 
    for index in types_should_run:
        df = DataFrame(np.random.randn(10, 2), columns=index(2))
        path = tmp_path / setup_path
        with catch_warnings(record=True):
            df.to_hdf(path, "df", format="table", data_columns=True)
            result = read_hdf(path, "df", where=f"index = [{df.index[0]}]")
            assert len(result)
 
 
def test_hdfstore_strides(setup_path):
    # GH22073
    df = DataFrame({"a": [1, 2, 3, 4], "b": [5, 6, 7, 8]})
    with ensure_clean_store(setup_path) as store:
        store.put("df", df)
        assert df["a"].values.strides == store["df"]["a"].values.strides
 
 
def test_store_bool_index(tmp_path, setup_path):
    # GH#48667
    df = DataFrame([[1]], columns=[True], index=Index([False], dtype="bool"))
    expected = df.copy()
 
    # # Test to make sure defaults are to not drop.
    # # Corresponding to Issue 9382
    path = tmp_path / setup_path
    df.to_hdf(path, "a")
    result = read_hdf(path, "a")
    tm.assert_frame_equal(expected, result)