zmc
2023-08-08 e792e9a60d958b93aef96050644f369feb25d61b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import re
 
import numpy as np
import pytest
 
from pandas.core.dtypes.cast import construct_1d_object_array_from_listlike
 
import pandas as pd
from pandas import (
    Index,
    IntervalIndex,
    MultiIndex,
    RangeIndex,
)
import pandas._testing as tm
 
 
def test_labels_dtypes():
    # GH 8456
    i = MultiIndex.from_tuples([("A", 1), ("A", 2)])
    assert i.codes[0].dtype == "int8"
    assert i.codes[1].dtype == "int8"
 
    i = MultiIndex.from_product([["a"], range(40)])
    assert i.codes[1].dtype == "int8"
    i = MultiIndex.from_product([["a"], range(400)])
    assert i.codes[1].dtype == "int16"
    i = MultiIndex.from_product([["a"], range(40000)])
    assert i.codes[1].dtype == "int32"
 
    i = MultiIndex.from_product([["a"], range(1000)])
    assert (i.codes[0] >= 0).all()
    assert (i.codes[1] >= 0).all()
 
 
def test_values_boxed():
    tuples = [
        (1, pd.Timestamp("2000-01-01")),
        (2, pd.NaT),
        (3, pd.Timestamp("2000-01-03")),
        (1, pd.Timestamp("2000-01-04")),
        (2, pd.Timestamp("2000-01-02")),
        (3, pd.Timestamp("2000-01-03")),
    ]
    result = MultiIndex.from_tuples(tuples)
    expected = construct_1d_object_array_from_listlike(tuples)
    tm.assert_numpy_array_equal(result.values, expected)
    # Check that code branches for boxed values produce identical results
    tm.assert_numpy_array_equal(result.values[:4], result[:4].values)
 
 
def test_values_multiindex_datetimeindex():
    # Test to ensure we hit the boxing / nobox part of MI.values
    ints = np.arange(10**18, 10**18 + 5)
    naive = pd.DatetimeIndex(ints)
 
    aware = pd.DatetimeIndex(ints, tz="US/Central")
 
    idx = MultiIndex.from_arrays([naive, aware])
    result = idx.values
 
    outer = pd.DatetimeIndex([x[0] for x in result])
    tm.assert_index_equal(outer, naive)
 
    inner = pd.DatetimeIndex([x[1] for x in result])
    tm.assert_index_equal(inner, aware)
 
    # n_lev > n_lab
    result = idx[:2].values
 
    outer = pd.DatetimeIndex([x[0] for x in result])
    tm.assert_index_equal(outer, naive[:2])
 
    inner = pd.DatetimeIndex([x[1] for x in result])
    tm.assert_index_equal(inner, aware[:2])
 
 
def test_values_multiindex_periodindex():
    # Test to ensure we hit the boxing / nobox part of MI.values
    ints = np.arange(2007, 2012)
    pidx = pd.PeriodIndex(ints, freq="D")
 
    idx = MultiIndex.from_arrays([ints, pidx])
    result = idx.values
 
    outer = Index([x[0] for x in result])
    tm.assert_index_equal(outer, Index(ints, dtype=np.int64))
 
    inner = pd.PeriodIndex([x[1] for x in result])
    tm.assert_index_equal(inner, pidx)
 
    # n_lev > n_lab
    result = idx[:2].values
 
    outer = Index([x[0] for x in result])
    tm.assert_index_equal(outer, Index(ints[:2], dtype=np.int64))
 
    inner = pd.PeriodIndex([x[1] for x in result])
    tm.assert_index_equal(inner, pidx[:2])
 
 
def test_consistency():
    # need to construct an overflow
    major_axis = list(range(70000))
    minor_axis = list(range(10))
 
    major_codes = np.arange(70000)
    minor_codes = np.repeat(range(10), 7000)
 
    # the fact that is works means it's consistent
    index = MultiIndex(
        levels=[major_axis, minor_axis], codes=[major_codes, minor_codes]
    )
 
    # inconsistent
    major_codes = np.array([0, 0, 1, 1, 1, 2, 2, 3, 3])
    minor_codes = np.array([0, 1, 0, 1, 1, 0, 1, 0, 1])
    index = MultiIndex(
        levels=[major_axis, minor_axis], codes=[major_codes, minor_codes]
    )
 
    assert index.is_unique is False
 
 
@pytest.mark.slow
def test_hash_collisions():
    # non-smoke test that we don't get hash collisions
 
    index = MultiIndex.from_product(
        [np.arange(1000), np.arange(1000)], names=["one", "two"]
    )
    result = index.get_indexer(index.values)
    tm.assert_numpy_array_equal(result, np.arange(len(index), dtype="intp"))
 
    for i in [0, 1, len(index) - 2, len(index) - 1]:
        result = index.get_loc(index[i])
        assert result == i
 
 
def test_dims():
    pass
 
 
def test_take_invalid_kwargs():
    vals = [["A", "B"], [pd.Timestamp("2011-01-01"), pd.Timestamp("2011-01-02")]]
    idx = MultiIndex.from_product(vals, names=["str", "dt"])
    indices = [1, 2]
 
    msg = r"take\(\) got an unexpected keyword argument 'foo'"
    with pytest.raises(TypeError, match=msg):
        idx.take(indices, foo=2)
 
    msg = "the 'out' parameter is not supported"
    with pytest.raises(ValueError, match=msg):
        idx.take(indices, out=indices)
 
    msg = "the 'mode' parameter is not supported"
    with pytest.raises(ValueError, match=msg):
        idx.take(indices, mode="clip")
 
 
def test_isna_behavior(idx):
    # should not segfault GH5123
    # NOTE: if MI representation changes, may make sense to allow
    # isna(MI)
    msg = "isna is not defined for MultiIndex"
    with pytest.raises(NotImplementedError, match=msg):
        pd.isna(idx)
 
 
def test_large_multiindex_error():
    # GH12527
    df_below_1000000 = pd.DataFrame(
        1, index=MultiIndex.from_product([[1, 2], range(499999)]), columns=["dest"]
    )
    with pytest.raises(KeyError, match=r"^\(-1, 0\)$"):
        df_below_1000000.loc[(-1, 0), "dest"]
    with pytest.raises(KeyError, match=r"^\(3, 0\)$"):
        df_below_1000000.loc[(3, 0), "dest"]
    df_above_1000000 = pd.DataFrame(
        1, index=MultiIndex.from_product([[1, 2], range(500001)]), columns=["dest"]
    )
    with pytest.raises(KeyError, match=r"^\(-1, 0\)$"):
        df_above_1000000.loc[(-1, 0), "dest"]
    with pytest.raises(KeyError, match=r"^\(3, 0\)$"):
        df_above_1000000.loc[(3, 0), "dest"]
 
 
def test_million_record_attribute_error():
    # GH 18165
    r = list(range(1000000))
    df = pd.DataFrame(
        {"a": r, "b": r}, index=MultiIndex.from_tuples([(x, x) for x in r])
    )
 
    msg = "'Series' object has no attribute 'foo'"
    with pytest.raises(AttributeError, match=msg):
        df["a"].foo()
 
 
def test_can_hold_identifiers(idx):
    key = idx[0]
    assert idx._can_hold_identifiers_and_holds_name(key) is True
 
 
def test_metadata_immutable(idx):
    levels, codes = idx.levels, idx.codes
    # shouldn't be able to set at either the top level or base level
    mutable_regex = re.compile("does not support mutable operations")
    with pytest.raises(TypeError, match=mutable_regex):
        levels[0] = levels[0]
    with pytest.raises(TypeError, match=mutable_regex):
        levels[0][0] = levels[0][0]
    # ditto for labels
    with pytest.raises(TypeError, match=mutable_regex):
        codes[0] = codes[0]
    with pytest.raises(ValueError, match="assignment destination is read-only"):
        codes[0][0] = codes[0][0]
    # and for names
    names = idx.names
    with pytest.raises(TypeError, match=mutable_regex):
        names[0] = names[0]
 
 
def test_level_setting_resets_attributes():
    ind = MultiIndex.from_arrays([["A", "A", "B", "B", "B"], [1, 2, 1, 2, 3]])
    assert ind.is_monotonic_increasing
    ind = ind.set_levels([["A", "B"], [1, 3, 2]])
    # if this fails, probably didn't reset the cache correctly.
    assert not ind.is_monotonic_increasing
 
 
def test_rangeindex_fallback_coercion_bug():
    # GH 12893
    df1 = pd.DataFrame(np.arange(100).reshape((10, 10)))
    df2 = pd.DataFrame(np.arange(100).reshape((10, 10)))
    df = pd.concat({"df1": df1.stack(), "df2": df2.stack()}, axis=1)
    df.index.names = ["fizz", "buzz"]
 
    str(df)
    expected = pd.DataFrame(
        {"df2": np.arange(100), "df1": np.arange(100)},
        index=MultiIndex.from_product([range(10), range(10)], names=["fizz", "buzz"]),
    )
    tm.assert_frame_equal(df, expected, check_like=True)
 
    result = df.index.get_level_values("fizz")
    expected = Index(np.arange(10, dtype=np.int64), name="fizz").repeat(10)
    tm.assert_index_equal(result, expected)
 
    result = df.index.get_level_values("buzz")
    expected = Index(np.tile(np.arange(10, dtype=np.int64), 10), name="buzz")
    tm.assert_index_equal(result, expected)
 
 
def test_memory_usage(idx):
    result = idx.memory_usage()
    if len(idx):
        idx.get_loc(idx[0])
        result2 = idx.memory_usage()
        result3 = idx.memory_usage(deep=True)
 
        # RangeIndex, IntervalIndex
        # don't have engines
        if not isinstance(idx, (RangeIndex, IntervalIndex)):
            assert result2 > result
 
        if idx.inferred_type == "object":
            assert result3 > result2
 
    else:
        # we report 0 for no-length
        assert result == 0
 
 
def test_nlevels(idx):
    assert idx.nlevels == 2