zmc
2023-08-08 e792e9a60d958b93aef96050644f369feb25d61b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
import random
 
import numpy as np
import pytest
 
import pandas as pd
from pandas import (
    Categorical,
    DataFrame,
    NaT,
    Timestamp,
    date_range,
)
import pandas._testing as tm
 
 
class TestDataFrameSortValues:
    @pytest.mark.parametrize("dtype", [np.uint8, bool])
    def test_sort_values_sparse_no_warning(self, dtype):
        # GH#45618
        ser = pd.Series(Categorical(["a", "b", "a"], categories=["a", "b", "c"]))
        df = pd.get_dummies(ser, dtype=dtype, sparse=True)
 
        with tm.assert_produces_warning(None):
            # No warnings about constructing Index from SparseArray
            df.sort_values(by=df.columns.tolist())
 
    def test_sort_values(self):
        frame = DataFrame(
            [[1, 1, 2], [3, 1, 0], [4, 5, 6]], index=[1, 2, 3], columns=list("ABC")
        )
 
        # by column (axis=0)
        sorted_df = frame.sort_values(by="A")
        indexer = frame["A"].argsort().values
        expected = frame.loc[frame.index[indexer]]
        tm.assert_frame_equal(sorted_df, expected)
 
        sorted_df = frame.sort_values(by="A", ascending=False)
        indexer = indexer[::-1]
        expected = frame.loc[frame.index[indexer]]
        tm.assert_frame_equal(sorted_df, expected)
 
        sorted_df = frame.sort_values(by="A", ascending=False)
        tm.assert_frame_equal(sorted_df, expected)
 
        # GH4839
        sorted_df = frame.sort_values(by=["A"], ascending=[False])
        tm.assert_frame_equal(sorted_df, expected)
 
        # multiple bys
        sorted_df = frame.sort_values(by=["B", "C"])
        expected = frame.loc[[2, 1, 3]]
        tm.assert_frame_equal(sorted_df, expected)
 
        sorted_df = frame.sort_values(by=["B", "C"], ascending=False)
        tm.assert_frame_equal(sorted_df, expected[::-1])
 
        sorted_df = frame.sort_values(by=["B", "A"], ascending=[True, False])
        tm.assert_frame_equal(sorted_df, expected)
 
        msg = "No axis named 2 for object type DataFrame"
        with pytest.raises(ValueError, match=msg):
            frame.sort_values(by=["A", "B"], axis=2, inplace=True)
 
        # by row (axis=1): GH#10806
        sorted_df = frame.sort_values(by=3, axis=1)
        expected = frame
        tm.assert_frame_equal(sorted_df, expected)
 
        sorted_df = frame.sort_values(by=3, axis=1, ascending=False)
        expected = frame.reindex(columns=["C", "B", "A"])
        tm.assert_frame_equal(sorted_df, expected)
 
        sorted_df = frame.sort_values(by=[1, 2], axis="columns")
        expected = frame.reindex(columns=["B", "A", "C"])
        tm.assert_frame_equal(sorted_df, expected)
 
        sorted_df = frame.sort_values(by=[1, 3], axis=1, ascending=[True, False])
        tm.assert_frame_equal(sorted_df, expected)
 
        sorted_df = frame.sort_values(by=[1, 3], axis=1, ascending=False)
        expected = frame.reindex(columns=["C", "B", "A"])
        tm.assert_frame_equal(sorted_df, expected)
 
        msg = r"Length of ascending \(5\) != length of by \(2\)"
        with pytest.raises(ValueError, match=msg):
            frame.sort_values(by=["A", "B"], axis=0, ascending=[True] * 5)
 
    def test_sort_values_by_empty_list(self):
        # https://github.com/pandas-dev/pandas/issues/40258
        expected = DataFrame({"a": [1, 4, 2, 5, 3, 6]})
        result = expected.sort_values(by=[])
        tm.assert_frame_equal(result, expected)
        assert result is not expected
 
    def test_sort_values_inplace(self):
        frame = DataFrame(
            np.random.randn(4, 4), index=[1, 2, 3, 4], columns=["A", "B", "C", "D"]
        )
 
        sorted_df = frame.copy()
        return_value = sorted_df.sort_values(by="A", inplace=True)
        assert return_value is None
        expected = frame.sort_values(by="A")
        tm.assert_frame_equal(sorted_df, expected)
 
        sorted_df = frame.copy()
        return_value = sorted_df.sort_values(by=1, axis=1, inplace=True)
        assert return_value is None
        expected = frame.sort_values(by=1, axis=1)
        tm.assert_frame_equal(sorted_df, expected)
 
        sorted_df = frame.copy()
        return_value = sorted_df.sort_values(by="A", ascending=False, inplace=True)
        assert return_value is None
        expected = frame.sort_values(by="A", ascending=False)
        tm.assert_frame_equal(sorted_df, expected)
 
        sorted_df = frame.copy()
        return_value = sorted_df.sort_values(
            by=["A", "B"], ascending=False, inplace=True
        )
        assert return_value is None
        expected = frame.sort_values(by=["A", "B"], ascending=False)
        tm.assert_frame_equal(sorted_df, expected)
 
    def test_sort_values_multicolumn(self):
        A = np.arange(5).repeat(20)
        B = np.tile(np.arange(5), 20)
        random.shuffle(A)
        random.shuffle(B)
        frame = DataFrame({"A": A, "B": B, "C": np.random.randn(100)})
 
        result = frame.sort_values(by=["A", "B"])
        indexer = np.lexsort((frame["B"], frame["A"]))
        expected = frame.take(indexer)
        tm.assert_frame_equal(result, expected)
 
        result = frame.sort_values(by=["A", "B"], ascending=False)
        indexer = np.lexsort(
            (frame["B"].rank(ascending=False), frame["A"].rank(ascending=False))
        )
        expected = frame.take(indexer)
        tm.assert_frame_equal(result, expected)
 
        result = frame.sort_values(by=["B", "A"])
        indexer = np.lexsort((frame["A"], frame["B"]))
        expected = frame.take(indexer)
        tm.assert_frame_equal(result, expected)
 
    def test_sort_values_multicolumn_uint64(self):
        # GH#9918
        # uint64 multicolumn sort
 
        df = DataFrame(
            {
                "a": pd.Series([18446637057563306014, 1162265347240853609]),
                "b": pd.Series([1, 2]),
            }
        )
        df["a"] = df["a"].astype(np.uint64)
        result = df.sort_values(["a", "b"])
 
        expected = DataFrame(
            {
                "a": pd.Series([18446637057563306014, 1162265347240853609]),
                "b": pd.Series([1, 2]),
            },
            index=pd.Index([1, 0]),
        )
 
        tm.assert_frame_equal(result, expected)
 
    def test_sort_values_nan(self):
        # GH#3917
        df = DataFrame(
            {"A": [1, 2, np.nan, 1, 6, 8, 4], "B": [9, np.nan, 5, 2, 5, 4, 5]}
        )
 
        # sort one column only
        expected = DataFrame(
            {"A": [np.nan, 1, 1, 2, 4, 6, 8], "B": [5, 9, 2, np.nan, 5, 5, 4]},
            index=[2, 0, 3, 1, 6, 4, 5],
        )
        sorted_df = df.sort_values(["A"], na_position="first")
        tm.assert_frame_equal(sorted_df, expected)
 
        expected = DataFrame(
            {"A": [np.nan, 8, 6, 4, 2, 1, 1], "B": [5, 4, 5, 5, np.nan, 9, 2]},
            index=[2, 5, 4, 6, 1, 0, 3],
        )
        sorted_df = df.sort_values(["A"], na_position="first", ascending=False)
        tm.assert_frame_equal(sorted_df, expected)
 
        expected = df.reindex(columns=["B", "A"])
        sorted_df = df.sort_values(by=1, axis=1, na_position="first")
        tm.assert_frame_equal(sorted_df, expected)
 
        # na_position='last', order
        expected = DataFrame(
            {"A": [1, 1, 2, 4, 6, 8, np.nan], "B": [2, 9, np.nan, 5, 5, 4, 5]},
            index=[3, 0, 1, 6, 4, 5, 2],
        )
        sorted_df = df.sort_values(["A", "B"])
        tm.assert_frame_equal(sorted_df, expected)
 
        # na_position='first', order
        expected = DataFrame(
            {"A": [np.nan, 1, 1, 2, 4, 6, 8], "B": [5, 2, 9, np.nan, 5, 5, 4]},
            index=[2, 3, 0, 1, 6, 4, 5],
        )
        sorted_df = df.sort_values(["A", "B"], na_position="first")
        tm.assert_frame_equal(sorted_df, expected)
 
        # na_position='first', not order
        expected = DataFrame(
            {"A": [np.nan, 1, 1, 2, 4, 6, 8], "B": [5, 9, 2, np.nan, 5, 5, 4]},
            index=[2, 0, 3, 1, 6, 4, 5],
        )
        sorted_df = df.sort_values(["A", "B"], ascending=[1, 0], na_position="first")
        tm.assert_frame_equal(sorted_df, expected)
 
        # na_position='last', not order
        expected = DataFrame(
            {"A": [8, 6, 4, 2, 1, 1, np.nan], "B": [4, 5, 5, np.nan, 2, 9, 5]},
            index=[5, 4, 6, 1, 3, 0, 2],
        )
        sorted_df = df.sort_values(["A", "B"], ascending=[0, 1], na_position="last")
        tm.assert_frame_equal(sorted_df, expected)
 
    def test_sort_values_stable_descending_sort(self):
        # GH#6399
        df = DataFrame(
            [[2, "first"], [2, "second"], [1, "a"], [1, "b"]],
            columns=["sort_col", "order"],
        )
        sorted_df = df.sort_values(by="sort_col", kind="mergesort", ascending=False)
        tm.assert_frame_equal(df, sorted_df)
 
    @pytest.mark.parametrize(
        "expected_idx_non_na, ascending",
        [
            [
                [3, 4, 5, 0, 1, 8, 6, 9, 7, 10, 13, 14],
                [True, True],
            ],
            [
                [0, 3, 4, 5, 1, 8, 6, 7, 10, 13, 14, 9],
                [True, False],
            ],
            [
                [9, 7, 10, 13, 14, 6, 8, 1, 3, 4, 5, 0],
                [False, True],
            ],
            [
                [7, 10, 13, 14, 9, 6, 8, 1, 0, 3, 4, 5],
                [False, False],
            ],
        ],
    )
    @pytest.mark.parametrize("na_position", ["first", "last"])
    def test_sort_values_stable_multicolumn_sort(
        self, expected_idx_non_na, ascending, na_position
    ):
        # GH#38426 Clarify sort_values with mult. columns / labels is stable
        df = DataFrame(
            {
                "A": [1, 2, np.nan, 1, 1, 1, 6, 8, 4, 8, 8, np.nan, np.nan, 8, 8],
                "B": [9, np.nan, 5, 2, 2, 2, 5, 4, 5, 3, 4, np.nan, np.nan, 4, 4],
            }
        )
        # All rows with NaN in col "B" only have unique values in "A", therefore,
        # only the rows with NaNs in "A" have to be treated individually:
        expected_idx = (
            [11, 12, 2] + expected_idx_non_na
            if na_position == "first"
            else expected_idx_non_na + [2, 11, 12]
        )
        expected = df.take(expected_idx)
        sorted_df = df.sort_values(
            ["A", "B"], ascending=ascending, na_position=na_position
        )
        tm.assert_frame_equal(sorted_df, expected)
 
    def test_sort_values_stable_categorial(self):
        # GH#16793
        df = DataFrame({"x": Categorical(np.repeat([1, 2, 3, 4], 5), ordered=True)})
        expected = df.copy()
        sorted_df = df.sort_values("x", kind="mergesort")
        tm.assert_frame_equal(sorted_df, expected)
 
    def test_sort_values_datetimes(self):
        # GH#3461, argsort / lexsort differences for a datetime column
        df = DataFrame(
            ["a", "a", "a", "b", "c", "d", "e", "f", "g"],
            columns=["A"],
            index=date_range("20130101", periods=9),
        )
        dts = [
            Timestamp(x)
            for x in [
                "2004-02-11",
                "2004-01-21",
                "2004-01-26",
                "2005-09-20",
                "2010-10-04",
                "2009-05-12",
                "2008-11-12",
                "2010-09-28",
                "2010-09-28",
            ]
        ]
        df["B"] = dts[::2] + dts[1::2]
        df["C"] = 2.0
        df["A1"] = 3.0
 
        df1 = df.sort_values(by="A")
        df2 = df.sort_values(by=["A"])
        tm.assert_frame_equal(df1, df2)
 
        df1 = df.sort_values(by="B")
        df2 = df.sort_values(by=["B"])
        tm.assert_frame_equal(df1, df2)
 
        df1 = df.sort_values(by="B")
 
        df2 = df.sort_values(by=["C", "B"])
        tm.assert_frame_equal(df1, df2)
 
    def test_sort_values_frame_column_inplace_sort_exception(
        self, float_frame, using_copy_on_write
    ):
        s = float_frame["A"]
        float_frame_orig = float_frame.copy()
        if using_copy_on_write:
            # INFO(CoW) Series is a new object, so can be changed inplace
            # without modifying original datafame
            s.sort_values(inplace=True)
            tm.assert_series_equal(s, float_frame_orig["A"].sort_values())
            # column in dataframe is not changed
            tm.assert_frame_equal(float_frame, float_frame_orig)
        else:
            with pytest.raises(ValueError, match="This Series is a view"):
                s.sort_values(inplace=True)
 
        cp = s.copy()
        cp.sort_values()  # it works!
 
    def test_sort_values_nat_values_in_int_column(self):
        # GH#14922: "sorting with large float and multiple columns incorrect"
 
        # cause was that the int64 value NaT was considered as "na". Which is
        # only correct for datetime64 columns.
 
        int_values = (2, int(NaT._value))
        float_values = (2.0, -1.797693e308)
 
        df = DataFrame(
            {"int": int_values, "float": float_values}, columns=["int", "float"]
        )
 
        df_reversed = DataFrame(
            {"int": int_values[::-1], "float": float_values[::-1]},
            columns=["int", "float"],
            index=[1, 0],
        )
 
        # NaT is not a "na" for int64 columns, so na_position must not
        # influence the result:
        df_sorted = df.sort_values(["int", "float"], na_position="last")
        tm.assert_frame_equal(df_sorted, df_reversed)
 
        df_sorted = df.sort_values(["int", "float"], na_position="first")
        tm.assert_frame_equal(df_sorted, df_reversed)
 
        # reverse sorting order
        df_sorted = df.sort_values(["int", "float"], ascending=False)
        tm.assert_frame_equal(df_sorted, df)
 
        # and now check if NaT is still considered as "na" for datetime64
        # columns:
        df = DataFrame(
            {"datetime": [Timestamp("2016-01-01"), NaT], "float": float_values},
            columns=["datetime", "float"],
        )
 
        df_reversed = DataFrame(
            {"datetime": [NaT, Timestamp("2016-01-01")], "float": float_values[::-1]},
            columns=["datetime", "float"],
            index=[1, 0],
        )
 
        df_sorted = df.sort_values(["datetime", "float"], na_position="first")
        tm.assert_frame_equal(df_sorted, df_reversed)
 
        df_sorted = df.sort_values(["datetime", "float"], na_position="last")
        tm.assert_frame_equal(df_sorted, df)
 
        # Ascending should not affect the results.
        df_sorted = df.sort_values(["datetime", "float"], ascending=False)
        tm.assert_frame_equal(df_sorted, df)
 
    def test_sort_nat(self):
        # GH 16836
 
        d1 = [Timestamp(x) for x in ["2016-01-01", "2015-01-01", np.nan, "2016-01-01"]]
        d2 = [
            Timestamp(x)
            for x in ["2017-01-01", "2014-01-01", "2016-01-01", "2015-01-01"]
        ]
        df = DataFrame({"a": d1, "b": d2}, index=[0, 1, 2, 3])
 
        d3 = [Timestamp(x) for x in ["2015-01-01", "2016-01-01", "2016-01-01", np.nan]]
        d4 = [
            Timestamp(x)
            for x in ["2014-01-01", "2015-01-01", "2017-01-01", "2016-01-01"]
        ]
        expected = DataFrame({"a": d3, "b": d4}, index=[1, 3, 0, 2])
        sorted_df = df.sort_values(by=["a", "b"])
        tm.assert_frame_equal(sorted_df, expected)
 
    def test_sort_values_na_position_with_categories(self):
        # GH#22556
        # Positioning missing value properly when column is Categorical.
        categories = ["A", "B", "C"]
        category_indices = [0, 2, 4]
        list_of_nans = [np.nan, np.nan]
        na_indices = [1, 3]
        na_position_first = "first"
        na_position_last = "last"
        column_name = "c"
 
        reversed_categories = sorted(categories, reverse=True)
        reversed_category_indices = sorted(category_indices, reverse=True)
        reversed_na_indices = sorted(na_indices)
 
        df = DataFrame(
            {
                column_name: Categorical(
                    ["A", np.nan, "B", np.nan, "C"], categories=categories, ordered=True
                )
            }
        )
        # sort ascending with na first
        result = df.sort_values(
            by=column_name, ascending=True, na_position=na_position_first
        )
        expected = DataFrame(
            {
                column_name: Categorical(
                    list_of_nans + categories, categories=categories, ordered=True
                )
            },
            index=na_indices + category_indices,
        )
 
        tm.assert_frame_equal(result, expected)
 
        # sort ascending with na last
        result = df.sort_values(
            by=column_name, ascending=True, na_position=na_position_last
        )
        expected = DataFrame(
            {
                column_name: Categorical(
                    categories + list_of_nans, categories=categories, ordered=True
                )
            },
            index=category_indices + na_indices,
        )
 
        tm.assert_frame_equal(result, expected)
 
        # sort descending with na first
        result = df.sort_values(
            by=column_name, ascending=False, na_position=na_position_first
        )
        expected = DataFrame(
            {
                column_name: Categorical(
                    list_of_nans + reversed_categories,
                    categories=categories,
                    ordered=True,
                )
            },
            index=reversed_na_indices + reversed_category_indices,
        )
 
        tm.assert_frame_equal(result, expected)
 
        # sort descending with na last
        result = df.sort_values(
            by=column_name, ascending=False, na_position=na_position_last
        )
        expected = DataFrame(
            {
                column_name: Categorical(
                    reversed_categories + list_of_nans,
                    categories=categories,
                    ordered=True,
                )
            },
            index=reversed_category_indices + reversed_na_indices,
        )
 
        tm.assert_frame_equal(result, expected)
 
    def test_sort_values_nat(self):
        # GH#16836
 
        d1 = [Timestamp(x) for x in ["2016-01-01", "2015-01-01", np.nan, "2016-01-01"]]
        d2 = [
            Timestamp(x)
            for x in ["2017-01-01", "2014-01-01", "2016-01-01", "2015-01-01"]
        ]
        df = DataFrame({"a": d1, "b": d2}, index=[0, 1, 2, 3])
 
        d3 = [Timestamp(x) for x in ["2015-01-01", "2016-01-01", "2016-01-01", np.nan]]
        d4 = [
            Timestamp(x)
            for x in ["2014-01-01", "2015-01-01", "2017-01-01", "2016-01-01"]
        ]
        expected = DataFrame({"a": d3, "b": d4}, index=[1, 3, 0, 2])
        sorted_df = df.sort_values(by=["a", "b"])
        tm.assert_frame_equal(sorted_df, expected)
 
    def test_sort_values_na_position_with_categories_raises(self):
        df = DataFrame(
            {
                "c": Categorical(
                    ["A", np.nan, "B", np.nan, "C"],
                    categories=["A", "B", "C"],
                    ordered=True,
                )
            }
        )
 
        with pytest.raises(ValueError, match="invalid na_position: bad_position"):
            df.sort_values(by="c", ascending=False, na_position="bad_position")
 
    @pytest.mark.parametrize("inplace", [True, False])
    @pytest.mark.parametrize(
        "original_dict, sorted_dict, ignore_index, output_index",
        [
            ({"A": [1, 2, 3]}, {"A": [3, 2, 1]}, True, [0, 1, 2]),
            ({"A": [1, 2, 3]}, {"A": [3, 2, 1]}, False, [2, 1, 0]),
            (
                {"A": [1, 2, 3], "B": [2, 3, 4]},
                {"A": [3, 2, 1], "B": [4, 3, 2]},
                True,
                [0, 1, 2],
            ),
            (
                {"A": [1, 2, 3], "B": [2, 3, 4]},
                {"A": [3, 2, 1], "B": [4, 3, 2]},
                False,
                [2, 1, 0],
            ),
        ],
    )
    def test_sort_values_ignore_index(
        self, inplace, original_dict, sorted_dict, ignore_index, output_index
    ):
        # GH 30114
        df = DataFrame(original_dict)
        expected = DataFrame(sorted_dict, index=output_index)
        kwargs = {"ignore_index": ignore_index, "inplace": inplace}
 
        if inplace:
            result_df = df.copy()
            result_df.sort_values("A", ascending=False, **kwargs)
        else:
            result_df = df.sort_values("A", ascending=False, **kwargs)
 
        tm.assert_frame_equal(result_df, expected)
        tm.assert_frame_equal(df, DataFrame(original_dict))
 
    def test_sort_values_nat_na_position_default(self):
        # GH 13230
        expected = DataFrame(
            {
                "A": [1, 2, 3, 4, 4],
                "date": pd.DatetimeIndex(
                    [
                        "2010-01-01 09:00:00",
                        "2010-01-01 09:00:01",
                        "2010-01-01 09:00:02",
                        "2010-01-01 09:00:03",
                        "NaT",
                    ]
                ),
            }
        )
        result = expected.sort_values(["A", "date"])
        tm.assert_frame_equal(result, expected)
 
    def test_sort_values_item_cache(self, using_array_manager, using_copy_on_write):
        # previous behavior incorrect retained an invalid _item_cache entry
        df = DataFrame(np.random.randn(4, 3), columns=["A", "B", "C"])
        df["D"] = df["A"] * 2
        ser = df["A"]
        if not using_array_manager:
            assert len(df._mgr.blocks) == 2
 
        df.sort_values(by="A")
 
        if using_copy_on_write:
            ser.iloc[0] = 99
            assert df.iloc[0, 0] == df["A"][0]
            assert df.iloc[0, 0] != 99
        else:
            ser.values[0] = 99
            assert df.iloc[0, 0] == df["A"][0]
            assert df.iloc[0, 0] == 99
 
    def test_sort_values_reshaping(self):
        # GH 39426
        values = list(range(21))
        expected = DataFrame([values], columns=values)
        df = expected.sort_values(expected.index[0], axis=1, ignore_index=True)
 
        tm.assert_frame_equal(df, expected)
 
    def test_sort_values_no_by_inplace(self):
        # GH#50643
        df = DataFrame({"a": [1, 2, 3]})
        expected = df.copy()
        result = df.sort_values(by=[], inplace=True)
        tm.assert_frame_equal(df, expected)
        assert result is None
 
    def test_sort_values_no_op_reset_index(self):
        # GH#52553
        df = DataFrame({"A": [10, 20], "B": [1, 5]}, index=[2, 3])
        result = df.sort_values(by="A", ignore_index=True)
        expected = DataFrame({"A": [10, 20], "B": [1, 5]})
        tm.assert_frame_equal(result, expected)
 
 
class TestDataFrameSortKey:  # test key sorting (issue 27237)
    def test_sort_values_inplace_key(self, sort_by_key):
        frame = DataFrame(
            np.random.randn(4, 4), index=[1, 2, 3, 4], columns=["A", "B", "C", "D"]
        )
 
        sorted_df = frame.copy()
        return_value = sorted_df.sort_values(by="A", inplace=True, key=sort_by_key)
        assert return_value is None
        expected = frame.sort_values(by="A", key=sort_by_key)
        tm.assert_frame_equal(sorted_df, expected)
 
        sorted_df = frame.copy()
        return_value = sorted_df.sort_values(
            by=1, axis=1, inplace=True, key=sort_by_key
        )
        assert return_value is None
        expected = frame.sort_values(by=1, axis=1, key=sort_by_key)
        tm.assert_frame_equal(sorted_df, expected)
 
        sorted_df = frame.copy()
        return_value = sorted_df.sort_values(
            by="A", ascending=False, inplace=True, key=sort_by_key
        )
        assert return_value is None
        expected = frame.sort_values(by="A", ascending=False, key=sort_by_key)
        tm.assert_frame_equal(sorted_df, expected)
 
        sorted_df = frame.copy()
        sorted_df.sort_values(
            by=["A", "B"], ascending=False, inplace=True, key=sort_by_key
        )
        expected = frame.sort_values(by=["A", "B"], ascending=False, key=sort_by_key)
        tm.assert_frame_equal(sorted_df, expected)
 
    def test_sort_values_key(self):
        df = DataFrame(np.array([0, 5, np.nan, 3, 2, np.nan]))
 
        result = df.sort_values(0)
        expected = df.iloc[[0, 4, 3, 1, 2, 5]]
        tm.assert_frame_equal(result, expected)
 
        result = df.sort_values(0, key=lambda x: x + 5)
        expected = df.iloc[[0, 4, 3, 1, 2, 5]]
        tm.assert_frame_equal(result, expected)
 
        result = df.sort_values(0, key=lambda x: -x, ascending=False)
        expected = df.iloc[[0, 4, 3, 1, 2, 5]]
        tm.assert_frame_equal(result, expected)
 
    def test_sort_values_by_key(self):
        df = DataFrame(
            {
                "a": np.array([0, 3, np.nan, 3, 2, np.nan]),
                "b": np.array([0, 2, np.nan, 5, 2, np.nan]),
            }
        )
 
        result = df.sort_values("a", key=lambda x: -x)
        expected = df.iloc[[1, 3, 4, 0, 2, 5]]
        tm.assert_frame_equal(result, expected)
 
        result = df.sort_values(by=["a", "b"], key=lambda x: -x)
        expected = df.iloc[[3, 1, 4, 0, 2, 5]]
        tm.assert_frame_equal(result, expected)
 
        result = df.sort_values(by=["a", "b"], key=lambda x: -x, ascending=False)
        expected = df.iloc[[0, 4, 1, 3, 2, 5]]
        tm.assert_frame_equal(result, expected)
 
    def test_sort_values_by_key_by_name(self):
        df = DataFrame(
            {
                "a": np.array([0, 3, np.nan, 3, 2, np.nan]),
                "b": np.array([0, 2, np.nan, 5, 2, np.nan]),
            }
        )
 
        def key(col):
            if col.name == "a":
                return -col
            else:
                return col
 
        result = df.sort_values(by="a", key=key)
        expected = df.iloc[[1, 3, 4, 0, 2, 5]]
        tm.assert_frame_equal(result, expected)
 
        result = df.sort_values(by=["a"], key=key)
        expected = df.iloc[[1, 3, 4, 0, 2, 5]]
        tm.assert_frame_equal(result, expected)
 
        result = df.sort_values(by="b", key=key)
        expected = df.iloc[[0, 1, 4, 3, 2, 5]]
        tm.assert_frame_equal(result, expected)
 
        result = df.sort_values(by=["a", "b"], key=key)
        expected = df.iloc[[1, 3, 4, 0, 2, 5]]
        tm.assert_frame_equal(result, expected)
 
    def test_sort_values_key_string(self):
        df = DataFrame(np.array([["hello", "goodbye"], ["hello", "Hello"]]))
 
        result = df.sort_values(1)
        expected = df[::-1]
        tm.assert_frame_equal(result, expected)
 
        result = df.sort_values([0, 1], key=lambda col: col.str.lower())
        tm.assert_frame_equal(result, df)
 
        result = df.sort_values(
            [0, 1], key=lambda col: col.str.lower(), ascending=False
        )
        expected = df.sort_values(1, key=lambda col: col.str.lower(), ascending=False)
        tm.assert_frame_equal(result, expected)
 
    def test_sort_values_key_empty(self, sort_by_key):
        df = DataFrame(np.array([]))
 
        df.sort_values(0, key=sort_by_key)
        df.sort_index(key=sort_by_key)
 
    def test_changes_length_raises(self):
        df = DataFrame({"A": [1, 2, 3]})
        with pytest.raises(ValueError, match="change the shape"):
            df.sort_values("A", key=lambda x: x[:1])
 
    def test_sort_values_key_axes(self):
        df = DataFrame({0: ["Hello", "goodbye"], 1: [0, 1]})
 
        result = df.sort_values(0, key=lambda col: col.str.lower())
        expected = df[::-1]
        tm.assert_frame_equal(result, expected)
 
        result = df.sort_values(1, key=lambda col: -col)
        expected = df[::-1]
        tm.assert_frame_equal(result, expected)
 
    def test_sort_values_key_dict_axis(self):
        df = DataFrame({0: ["Hello", 0], 1: ["goodbye", 1]})
 
        result = df.sort_values(0, key=lambda col: col.str.lower(), axis=1)
        expected = df.loc[:, ::-1]
        tm.assert_frame_equal(result, expected)
 
        result = df.sort_values(1, key=lambda col: -col, axis=1)
        expected = df.loc[:, ::-1]
        tm.assert_frame_equal(result, expected)
 
    @pytest.mark.parametrize("ordered", [True, False])
    def test_sort_values_key_casts_to_categorical(self, ordered):
        # https://github.com/pandas-dev/pandas/issues/36383
        categories = ["c", "b", "a"]
        df = DataFrame({"x": [1, 1, 1], "y": ["a", "b", "c"]})
 
        def sorter(key):
            if key.name == "y":
                return pd.Series(
                    Categorical(key, categories=categories, ordered=ordered)
                )
            return key
 
        result = df.sort_values(by=["x", "y"], key=sorter)
        expected = DataFrame(
            {"x": [1, 1, 1], "y": ["c", "b", "a"]}, index=pd.Index([2, 1, 0])
        )
 
        tm.assert_frame_equal(result, expected)
 
 
@pytest.fixture
def df_none():
    return DataFrame(
        {
            "outer": ["a", "a", "a", "b", "b", "b"],
            "inner": [1, 2, 2, 2, 1, 1],
            "A": np.arange(6, 0, -1),
            ("B", 5): ["one", "one", "two", "two", "one", "one"],
        }
    )
 
 
@pytest.fixture(params=[["outer"], ["outer", "inner"]])
def df_idx(request, df_none):
    levels = request.param
    return df_none.set_index(levels)
 
 
@pytest.fixture(
    params=[
        "inner",  # index level
        ["outer"],  # list of index level
        "A",  # column
        [("B", 5)],  # list of column
        ["inner", "outer"],  # two index levels
        [("B", 5), "outer"],  # index level and column
        ["A", ("B", 5)],  # Two columns
        ["inner", "outer"],  # two index levels and column
    ]
)
def sort_names(request):
    return request.param
 
 
@pytest.fixture(params=[True, False])
def ascending(request):
    return request.param
 
 
class TestSortValuesLevelAsStr:
    def test_sort_index_level_and_column_label(
        self, df_none, df_idx, sort_names, ascending
    ):
        # GH#14353
 
        # Get index levels from df_idx
        levels = df_idx.index.names
 
        # Compute expected by sorting on columns and the setting index
        expected = df_none.sort_values(
            by=sort_names, ascending=ascending, axis=0
        ).set_index(levels)
 
        # Compute result sorting on mix on columns and index levels
        result = df_idx.sort_values(by=sort_names, ascending=ascending, axis=0)
 
        tm.assert_frame_equal(result, expected)
 
    def test_sort_column_level_and_index_label(
        self, df_none, df_idx, sort_names, ascending
    ):
        # GH#14353
 
        # Get levels from df_idx
        levels = df_idx.index.names
 
        # Compute expected by sorting on axis=0, setting index levels, and then
        # transposing. For some cases this will result in a frame with
        # multiple column levels
        expected = (
            df_none.sort_values(by=sort_names, ascending=ascending, axis=0)
            .set_index(levels)
            .T
        )
 
        # Compute result by transposing and sorting on axis=1.
        result = df_idx.T.sort_values(by=sort_names, ascending=ascending, axis=1)
 
        tm.assert_frame_equal(result, expected)
 
    def test_sort_values_validate_ascending_for_value_error(self):
        # GH41634
        df = DataFrame({"D": [23, 7, 21]})
 
        msg = 'For argument "ascending" expected type bool, received type str.'
        with pytest.raises(ValueError, match=msg):
            df.sort_values(by="D", ascending="False")
 
    @pytest.mark.parametrize("ascending", [False, 0, 1, True])
    def test_sort_values_validate_ascending_functional(self, ascending):
        df = DataFrame({"D": [23, 7, 21]})
        indexer = df["D"].argsort().values
 
        if not ascending:
            indexer = indexer[::-1]
 
        expected = df.loc[df.index[indexer]]
        result = df.sort_values(by="D", ascending=ascending)
        tm.assert_frame_equal(result, expected)