zmc
2023-08-08 e792e9a60d958b93aef96050644f369feb25d61b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
import collections
from datetime import timedelta
 
import numpy as np
import pytest
 
import pandas as pd
from pandas import (
    DatetimeIndex,
    Index,
    Interval,
    IntervalIndex,
    MultiIndex,
    Series,
    Timedelta,
    TimedeltaIndex,
)
import pandas._testing as tm
from pandas.tests.base.common import allow_na_ops
 
 
def test_value_counts(index_or_series_obj):
    obj = index_or_series_obj
    obj = np.repeat(obj, range(1, len(obj) + 1))
    result = obj.value_counts()
 
    counter = collections.Counter(obj)
    expected = Series(dict(counter.most_common()), dtype=np.int64, name="count")
 
    if obj.dtype != np.float16:
        expected.index = expected.index.astype(obj.dtype)
    else:
        with pytest.raises(NotImplementedError, match="float16 indexes are not "):
            expected.index.astype(obj.dtype)
        return
    if isinstance(expected.index, MultiIndex):
        expected.index.names = obj.names
    else:
        expected.index.name = obj.name
 
    if not isinstance(result.dtype, np.dtype):
        if getattr(obj.dtype, "storage", "") == "pyarrow":
            expected = expected.astype("int64[pyarrow]")
        else:
            # i.e IntegerDtype
            expected = expected.astype("Int64")
 
    # TODO(GH#32514): Order of entries with the same count is inconsistent
    #  on CI (gh-32449)
    if obj.duplicated().any():
        result = result.sort_index()
        expected = expected.sort_index()
    tm.assert_series_equal(result, expected)
 
 
@pytest.mark.parametrize("null_obj", [np.nan, None])
def test_value_counts_null(null_obj, index_or_series_obj):
    orig = index_or_series_obj
    obj = orig.copy()
 
    if not allow_na_ops(obj):
        pytest.skip("type doesn't allow for NA operations")
    elif len(obj) < 1:
        pytest.skip("Test doesn't make sense on empty data")
    elif isinstance(orig, MultiIndex):
        pytest.skip(f"MultiIndex can't hold '{null_obj}'")
 
    values = obj._values
    values[0:2] = null_obj
 
    klass = type(obj)
    repeated_values = np.repeat(values, range(1, len(values) + 1))
    obj = klass(repeated_values, dtype=obj.dtype)
 
    # because np.nan == np.nan is False, but None == None is True
    # np.nan would be duplicated, whereas None wouldn't
    counter = collections.Counter(obj.dropna())
    expected = Series(dict(counter.most_common()), dtype=np.int64, name="count")
 
    if obj.dtype != np.float16:
        expected.index = expected.index.astype(obj.dtype)
    else:
        with pytest.raises(NotImplementedError, match="float16 indexes are not "):
            expected.index.astype(obj.dtype)
        return
    expected.index.name = obj.name
 
    result = obj.value_counts()
    if obj.duplicated().any():
        # TODO(GH#32514):
        #  Order of entries with the same count is inconsistent on CI (gh-32449)
        expected = expected.sort_index()
        result = result.sort_index()
 
    if not isinstance(result.dtype, np.dtype):
        if getattr(obj.dtype, "storage", "") == "pyarrow":
            expected = expected.astype("int64[pyarrow]")
        else:
            # i.e IntegerDtype
            expected = expected.astype("Int64")
    tm.assert_series_equal(result, expected)
 
    expected[null_obj] = 3
 
    result = obj.value_counts(dropna=False)
    if obj.duplicated().any():
        # TODO(GH#32514):
        #  Order of entries with the same count is inconsistent on CI (gh-32449)
        expected = expected.sort_index()
        result = result.sort_index()
    tm.assert_series_equal(result, expected)
 
 
def test_value_counts_inferred(index_or_series):
    klass = index_or_series
    s_values = ["a", "b", "b", "b", "b", "c", "d", "d", "a", "a"]
    s = klass(s_values)
    expected = Series([4, 3, 2, 1], index=["b", "a", "d", "c"], name="count")
    tm.assert_series_equal(s.value_counts(), expected)
 
    if isinstance(s, Index):
        exp = Index(np.unique(np.array(s_values, dtype=np.object_)))
        tm.assert_index_equal(s.unique(), exp)
    else:
        exp = np.unique(np.array(s_values, dtype=np.object_))
        tm.assert_numpy_array_equal(s.unique(), exp)
 
    assert s.nunique() == 4
    # don't sort, have to sort after the fact as not sorting is
    # platform-dep
    hist = s.value_counts(sort=False).sort_values()
    expected = Series([3, 1, 4, 2], index=list("acbd"), name="count").sort_values()
    tm.assert_series_equal(hist, expected)
 
    # sort ascending
    hist = s.value_counts(ascending=True)
    expected = Series([1, 2, 3, 4], index=list("cdab"), name="count")
    tm.assert_series_equal(hist, expected)
 
    # relative histogram.
    hist = s.value_counts(normalize=True)
    expected = Series(
        [0.4, 0.3, 0.2, 0.1], index=["b", "a", "d", "c"], name="proportion"
    )
    tm.assert_series_equal(hist, expected)
 
 
def test_value_counts_bins(index_or_series):
    klass = index_or_series
    s_values = ["a", "b", "b", "b", "b", "c", "d", "d", "a", "a"]
    s = klass(s_values)
 
    # bins
    msg = "bins argument only works with numeric data"
    with pytest.raises(TypeError, match=msg):
        s.value_counts(bins=1)
 
    s1 = Series([1, 1, 2, 3])
    res1 = s1.value_counts(bins=1)
    exp1 = Series({Interval(0.997, 3.0): 4}, name="count")
    tm.assert_series_equal(res1, exp1)
    res1n = s1.value_counts(bins=1, normalize=True)
    exp1n = Series({Interval(0.997, 3.0): 1.0}, name="proportion")
    tm.assert_series_equal(res1n, exp1n)
 
    if isinstance(s1, Index):
        tm.assert_index_equal(s1.unique(), Index([1, 2, 3]))
    else:
        exp = np.array([1, 2, 3], dtype=np.int64)
        tm.assert_numpy_array_equal(s1.unique(), exp)
 
    assert s1.nunique() == 3
 
    # these return the same
    res4 = s1.value_counts(bins=4, dropna=True)
    intervals = IntervalIndex.from_breaks([0.997, 1.5, 2.0, 2.5, 3.0])
    exp4 = Series([2, 1, 1, 0], index=intervals.take([0, 1, 3, 2]), name="count")
    tm.assert_series_equal(res4, exp4)
 
    res4 = s1.value_counts(bins=4, dropna=False)
    intervals = IntervalIndex.from_breaks([0.997, 1.5, 2.0, 2.5, 3.0])
    exp4 = Series([2, 1, 1, 0], index=intervals.take([0, 1, 3, 2]), name="count")
    tm.assert_series_equal(res4, exp4)
 
    res4n = s1.value_counts(bins=4, normalize=True)
    exp4n = Series(
        [0.5, 0.25, 0.25, 0], index=intervals.take([0, 1, 3, 2]), name="proportion"
    )
    tm.assert_series_equal(res4n, exp4n)
 
    # handle NA's properly
    s_values = ["a", "b", "b", "b", np.nan, np.nan, "d", "d", "a", "a", "b"]
    s = klass(s_values)
    expected = Series([4, 3, 2], index=["b", "a", "d"], name="count")
    tm.assert_series_equal(s.value_counts(), expected)
 
    if isinstance(s, Index):
        exp = Index(["a", "b", np.nan, "d"])
        tm.assert_index_equal(s.unique(), exp)
    else:
        exp = np.array(["a", "b", np.nan, "d"], dtype=object)
        tm.assert_numpy_array_equal(s.unique(), exp)
    assert s.nunique() == 3
 
    s = klass({}) if klass is dict else klass({}, dtype=object)
    expected = Series([], dtype=np.int64, name="count")
    tm.assert_series_equal(s.value_counts(), expected, check_index_type=False)
    # returned dtype differs depending on original
    if isinstance(s, Index):
        tm.assert_index_equal(s.unique(), Index([]), exact=False)
    else:
        tm.assert_numpy_array_equal(s.unique(), np.array([]), check_dtype=False)
 
    assert s.nunique() == 0
 
 
def test_value_counts_datetime64(index_or_series):
    klass = index_or_series
 
    # GH 3002, datetime64[ns]
    # don't test names though
    df = pd.DataFrame(
        {
            "person_id": ["xxyyzz", "xxyyzz", "xxyyzz", "xxyyww", "foofoo", "foofoo"],
            "dt": pd.to_datetime(
                [
                    "2010-01-01",
                    "2010-01-01",
                    "2010-01-01",
                    "2009-01-01",
                    "2008-09-09",
                    "2008-09-09",
                ]
            ),
            "food": ["PIE", "GUM", "EGG", "EGG", "PIE", "GUM"],
        }
    )
 
    s = klass(df["dt"].copy())
    s.name = None
    idx = pd.to_datetime(
        ["2010-01-01 00:00:00", "2008-09-09 00:00:00", "2009-01-01 00:00:00"]
    )
    expected_s = Series([3, 2, 1], index=idx, name="count")
    tm.assert_series_equal(s.value_counts(), expected_s)
 
    expected = pd.array(
        np.array(
            ["2010-01-01 00:00:00", "2009-01-01 00:00:00", "2008-09-09 00:00:00"],
            dtype="datetime64[ns]",
        )
    )
    if isinstance(s, Index):
        tm.assert_index_equal(s.unique(), DatetimeIndex(expected))
    else:
        tm.assert_extension_array_equal(s.unique(), expected)
 
    assert s.nunique() == 3
 
    # with NaT
    s = df["dt"].copy()
    s = klass(list(s.values) + [pd.NaT] * 4)
 
    result = s.value_counts()
    assert result.index.dtype == "datetime64[ns]"
    tm.assert_series_equal(result, expected_s)
 
    result = s.value_counts(dropna=False)
    expected_s = pd.concat(
        [Series([4], index=DatetimeIndex([pd.NaT]), name="count"), expected_s]
    )
    tm.assert_series_equal(result, expected_s)
 
    assert s.dtype == "datetime64[ns]"
    unique = s.unique()
    assert unique.dtype == "datetime64[ns]"
 
    # numpy_array_equal cannot compare pd.NaT
    if isinstance(s, Index):
        exp_idx = DatetimeIndex(expected.tolist() + [pd.NaT])
        tm.assert_index_equal(unique, exp_idx)
    else:
        tm.assert_extension_array_equal(unique[:3], expected)
        assert pd.isna(unique[3])
 
    assert s.nunique() == 3
    assert s.nunique(dropna=False) == 4
 
    # timedelta64[ns]
    td = df.dt - df.dt + timedelta(1)
    td = klass(td, name="dt")
 
    result = td.value_counts()
    expected_s = Series([6], index=Index([Timedelta("1day")], name="dt"), name="count")
    tm.assert_series_equal(result, expected_s)
 
    expected = TimedeltaIndex(["1 days"], name="dt")
    if isinstance(td, Index):
        tm.assert_index_equal(td.unique(), expected)
    else:
        tm.assert_extension_array_equal(td.unique(), expected._values)
 
    td2 = timedelta(1) + (df.dt - df.dt)
    td2 = klass(td2, name="dt")
    result2 = td2.value_counts()
    tm.assert_series_equal(result2, expected_s)
 
 
@pytest.mark.parametrize("dropna", [True, False])
def test_value_counts_with_nan(dropna, index_or_series):
    # GH31944
    klass = index_or_series
    values = [True, pd.NA, np.nan]
    obj = klass(values)
    res = obj.value_counts(dropna=dropna)
    if dropna is True:
        expected = Series([1], index=Index([True], dtype=obj.dtype), name="count")
    else:
        expected = Series([1, 1, 1], index=[True, pd.NA, np.nan], name="count")
    tm.assert_series_equal(res, expected)