zmc
2023-08-08 e792e9a60d958b93aef96050644f369feb25d61b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import numpy as np
import pytest
 
from pandas.core.dtypes.dtypes import DatetimeTZDtype
 
import pandas as pd
from pandas import NaT
import pandas._testing as tm
from pandas.core.arrays import DatetimeArray
 
 
class TestReductions:
    @pytest.fixture(params=["s", "ms", "us", "ns"])
    def unit(self, request):
        return request.param
 
    @pytest.fixture
    def arr1d(self, tz_naive_fixture):
        """Fixture returning DatetimeArray with parametrized timezones"""
        tz = tz_naive_fixture
        dtype = DatetimeTZDtype(tz=tz) if tz is not None else np.dtype("M8[ns]")
        arr = DatetimeArray._from_sequence(
            [
                "2000-01-03",
                "2000-01-03",
                "NaT",
                "2000-01-02",
                "2000-01-05",
                "2000-01-04",
            ],
            dtype=dtype,
        )
        return arr
 
    def test_min_max(self, arr1d, unit):
        arr = arr1d
        arr = arr.as_unit(unit)
        tz = arr.tz
 
        result = arr.min()
        expected = pd.Timestamp("2000-01-02", tz=tz).as_unit(unit)
        assert result == expected
        assert result.unit == expected.unit
 
        result = arr.max()
        expected = pd.Timestamp("2000-01-05", tz=tz).as_unit(unit)
        assert result == expected
        assert result.unit == expected.unit
 
        result = arr.min(skipna=False)
        assert result is NaT
 
        result = arr.max(skipna=False)
        assert result is NaT
 
    @pytest.mark.parametrize("tz", [None, "US/Central"])
    @pytest.mark.parametrize("skipna", [True, False])
    def test_min_max_empty(self, skipna, tz):
        dtype = DatetimeTZDtype(tz=tz) if tz is not None else np.dtype("M8[ns]")
        arr = DatetimeArray._from_sequence([], dtype=dtype)
        result = arr.min(skipna=skipna)
        assert result is NaT
 
        result = arr.max(skipna=skipna)
        assert result is NaT
 
    @pytest.mark.parametrize("tz", [None, "US/Central"])
    @pytest.mark.parametrize("skipna", [True, False])
    def test_median_empty(self, skipna, tz):
        dtype = DatetimeTZDtype(tz=tz) if tz is not None else np.dtype("M8[ns]")
        arr = DatetimeArray._from_sequence([], dtype=dtype)
        result = arr.median(skipna=skipna)
        assert result is NaT
 
        arr = arr.reshape(0, 3)
        result = arr.median(axis=0, skipna=skipna)
        expected = type(arr)._from_sequence([NaT, NaT, NaT], dtype=arr.dtype)
        tm.assert_equal(result, expected)
 
        result = arr.median(axis=1, skipna=skipna)
        expected = type(arr)._from_sequence([], dtype=arr.dtype)
        tm.assert_equal(result, expected)
 
    def test_median(self, arr1d):
        arr = arr1d
 
        result = arr.median()
        assert result == arr[0]
        result = arr.median(skipna=False)
        assert result is NaT
 
        result = arr.dropna().median(skipna=False)
        assert result == arr[0]
 
        result = arr.median(axis=0)
        assert result == arr[0]
 
    def test_median_axis(self, arr1d):
        arr = arr1d
        assert arr.median(axis=0) == arr.median()
        assert arr.median(axis=0, skipna=False) is NaT
 
        msg = r"abs\(axis\) must be less than ndim"
        with pytest.raises(ValueError, match=msg):
            arr.median(axis=1)
 
    @pytest.mark.filterwarnings("ignore:All-NaN slice encountered:RuntimeWarning")
    def test_median_2d(self, arr1d):
        arr = arr1d.reshape(1, -1)
 
        # axis = None
        assert arr.median() == arr1d.median()
        assert arr.median(skipna=False) is NaT
 
        # axis = 0
        result = arr.median(axis=0)
        expected = arr1d
        tm.assert_equal(result, expected)
 
        # Since column 3 is all-NaT, we get NaT there with or without skipna
        result = arr.median(axis=0, skipna=False)
        expected = arr1d
        tm.assert_equal(result, expected)
 
        # axis = 1
        result = arr.median(axis=1)
        expected = type(arr)._from_sequence([arr1d.median()])
        tm.assert_equal(result, expected)
 
        result = arr.median(axis=1, skipna=False)
        expected = type(arr)._from_sequence([NaT], dtype=arr.dtype)
        tm.assert_equal(result, expected)
 
    def test_mean(self, arr1d):
        arr = arr1d
 
        # manually verified result
        expected = arr[0] + 0.4 * pd.Timedelta(days=1)
 
        result = arr.mean()
        assert result == expected
        result = arr.mean(skipna=False)
        assert result is NaT
 
        result = arr.dropna().mean(skipna=False)
        assert result == expected
 
        result = arr.mean(axis=0)
        assert result == expected
 
    def test_mean_2d(self):
        dti = pd.date_range("2016-01-01", periods=6, tz="US/Pacific")
        dta = dti._data.reshape(3, 2)
 
        result = dta.mean(axis=0)
        expected = dta[1]
        tm.assert_datetime_array_equal(result, expected)
 
        result = dta.mean(axis=1)
        expected = dta[:, 0] + pd.Timedelta(hours=12)
        tm.assert_datetime_array_equal(result, expected)
 
        result = dta.mean(axis=None)
        expected = dti.mean()
        assert result == expected
 
    @pytest.mark.parametrize("skipna", [True, False])
    def test_mean_empty(self, arr1d, skipna):
        arr = arr1d[:0]
 
        assert arr.mean(skipna=skipna) is NaT
 
        arr2d = arr.reshape(0, 3)
        result = arr2d.mean(axis=0, skipna=skipna)
        expected = DatetimeArray._from_sequence([NaT, NaT, NaT], dtype=arr.dtype)
        tm.assert_datetime_array_equal(result, expected)
 
        result = arr2d.mean(axis=1, skipna=skipna)
        expected = arr  # i.e. 1D, empty
        tm.assert_datetime_array_equal(result, expected)
 
        result = arr2d.mean(axis=None, skipna=skipna)
        assert result is NaT