zmc
2023-08-08 e792e9a60d958b93aef96050644f369feb25d61b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
"""
Read a SAS XPort format file into a Pandas DataFrame.
 
Based on code from Jack Cushman (github.com/jcushman/xport).
 
The file format is defined here:
 
https://support.sas.com/content/dam/SAS/support/en/technical-papers/record-layout-of-a-sas-version-5-or-6-data-set-in-sas-transport-xport-format.pdf
"""
from __future__ import annotations
 
from collections import abc
from datetime import datetime
import struct
import warnings
 
import numpy as np
 
from pandas._typing import (
    CompressionOptions,
    DatetimeNaTType,
    FilePath,
    ReadBuffer,
)
from pandas.util._decorators import Appender
from pandas.util._exceptions import find_stack_level
 
import pandas as pd
 
from pandas.io.common import get_handle
from pandas.io.sas.sasreader import ReaderBase
 
_correct_line1 = (
    "HEADER RECORD*******LIBRARY HEADER RECORD!!!!!!!"
    "000000000000000000000000000000  "
)
_correct_header1 = (
    "HEADER RECORD*******MEMBER  HEADER RECORD!!!!!!!000000000000000001600000000"
)
_correct_header2 = (
    "HEADER RECORD*******DSCRPTR HEADER RECORD!!!!!!!"
    "000000000000000000000000000000  "
)
_correct_obs_header = (
    "HEADER RECORD*******OBS     HEADER RECORD!!!!!!!"
    "000000000000000000000000000000  "
)
_fieldkeys = [
    "ntype",
    "nhfun",
    "field_length",
    "nvar0",
    "name",
    "label",
    "nform",
    "nfl",
    "num_decimals",
    "nfj",
    "nfill",
    "niform",
    "nifl",
    "nifd",
    "npos",
    "_",
]
 
 
_base_params_doc = """\
Parameters
----------
filepath_or_buffer : str or file-like object
    Path to SAS file or object implementing binary read method."""
 
_params2_doc = """\
index : identifier of index column
    Identifier of column that should be used as index of the DataFrame.
encoding : str
    Encoding for text data.
chunksize : int
    Read file `chunksize` lines at a time, returns iterator."""
 
_format_params_doc = """\
format : str
    File format, only `xport` is currently supported."""
 
_iterator_doc = """\
iterator : bool, default False
    Return XportReader object for reading file incrementally."""
 
 
_read_sas_doc = f"""Read a SAS file into a DataFrame.
 
{_base_params_doc}
{_format_params_doc}
{_params2_doc}
{_iterator_doc}
 
Returns
-------
DataFrame or XportReader
 
Examples
--------
Read a SAS Xport file:
 
>>> df = pd.read_sas('filename.XPT')
 
Read a Xport file in 10,000 line chunks:
 
>>> itr = pd.read_sas('filename.XPT', chunksize=10000)
>>> for chunk in itr:
>>>     do_something(chunk)
 
"""
 
_xport_reader_doc = f"""\
Class for reading SAS Xport files.
 
{_base_params_doc}
{_params2_doc}
 
Attributes
----------
member_info : list
    Contains information about the file
fields : list
    Contains information about the variables in the file
"""
 
_read_method_doc = """\
Read observations from SAS Xport file, returning as data frame.
 
Parameters
----------
nrows : int
    Number of rows to read from data file; if None, read whole
    file.
 
Returns
-------
A DataFrame.
"""
 
 
def _parse_date(datestr: str) -> DatetimeNaTType:
    """Given a date in xport format, return Python date."""
    try:
        # e.g. "16FEB11:10:07:55"
        return datetime.strptime(datestr, "%d%b%y:%H:%M:%S")
    except ValueError:
        return pd.NaT
 
 
def _split_line(s: str, parts):
    """
    Parameters
    ----------
    s: str
        Fixed-length string to split
    parts: list of (name, length) pairs
        Used to break up string, name '_' will be filtered from output.
 
    Returns
    -------
    Dict of name:contents of string at given location.
    """
    out = {}
    start = 0
    for name, length in parts:
        out[name] = s[start : start + length].strip()
        start += length
    del out["_"]
    return out
 
 
def _handle_truncated_float_vec(vec, nbytes):
    # This feature is not well documented, but some SAS XPORT files
    # have 2-7 byte "truncated" floats.  To read these truncated
    # floats, pad them with zeros on the right to make 8 byte floats.
    #
    # References:
    # https://github.com/jcushman/xport/pull/3
    # The R "foreign" library
 
    if nbytes != 8:
        vec1 = np.zeros(len(vec), np.dtype("S8"))
        dtype = np.dtype(f"S{nbytes},S{8 - nbytes}")
        vec2 = vec1.view(dtype=dtype)
        vec2["f0"] = vec
        return vec2
 
    return vec
 
 
def _parse_float_vec(vec):
    """
    Parse a vector of float values representing IBM 8 byte floats into
    native 8 byte floats.
    """
    dtype = np.dtype(">u4,>u4")
    vec1 = vec.view(dtype=dtype)
    xport1 = vec1["f0"]
    xport2 = vec1["f1"]
 
    # Start by setting first half of ieee number to first half of IBM
    # number sans exponent
    ieee1 = xport1 & 0x00FFFFFF
 
    # The fraction bit to the left of the binary point in the ieee
    # format was set and the number was shifted 0, 1, 2, or 3
    # places. This will tell us how to adjust the ibm exponent to be a
    # power of 2 ieee exponent and how to shift the fraction bits to
    # restore the correct magnitude.
    shift = np.zeros(len(vec), dtype=np.uint8)
    shift[np.where(xport1 & 0x00200000)] = 1
    shift[np.where(xport1 & 0x00400000)] = 2
    shift[np.where(xport1 & 0x00800000)] = 3
 
    # shift the ieee number down the correct number of places then
    # set the second half of the ieee number to be the second half
    # of the ibm number shifted appropriately, ored with the bits
    # from the first half that would have been shifted in if we
    # could shift a double. All we are worried about are the low
    # order 3 bits of the first half since we're only shifting by
    # 1, 2, or 3.
    ieee1 >>= shift
    ieee2 = (xport2 >> shift) | ((xport1 & 0x00000007) << (29 + (3 - shift)))
 
    # clear the 1 bit to the left of the binary point
    ieee1 &= 0xFFEFFFFF
 
    # set the exponent of the ieee number to be the actual exponent
    # plus the shift count + 1023. Or this into the first half of the
    # ieee number. The ibm exponent is excess 64 but is adjusted by 65
    # since during conversion to ibm format the exponent is
    # incremented by 1 and the fraction bits left 4 positions to the
    # right of the radix point.  (had to add >> 24 because C treats &
    # 0x7f as 0x7f000000 and Python doesn't)
    ieee1 |= ((((((xport1 >> 24) & 0x7F) - 65) << 2) + shift + 1023) << 20) | (
        xport1 & 0x80000000
    )
 
    ieee = np.empty((len(ieee1),), dtype=">u4,>u4")
    ieee["f0"] = ieee1
    ieee["f1"] = ieee2
    ieee = ieee.view(dtype=">f8")
    ieee = ieee.astype("f8")
 
    return ieee
 
 
class XportReader(ReaderBase, abc.Iterator):
    __doc__ = _xport_reader_doc
 
    def __init__(
        self,
        filepath_or_buffer: FilePath | ReadBuffer[bytes],
        index=None,
        encoding: str | None = "ISO-8859-1",
        chunksize=None,
        compression: CompressionOptions = "infer",
    ) -> None:
        self._encoding = encoding
        self._lines_read = 0
        self._index = index
        self._chunksize = chunksize
 
        self.handles = get_handle(
            filepath_or_buffer,
            "rb",
            encoding=encoding,
            is_text=False,
            compression=compression,
        )
        self.filepath_or_buffer = self.handles.handle
 
        try:
            self._read_header()
        except Exception:
            self.close()
            raise
 
    def close(self) -> None:
        self.handles.close()
 
    def _get_row(self):
        return self.filepath_or_buffer.read(80).decode()
 
    def _read_header(self):
        self.filepath_or_buffer.seek(0)
 
        # read file header
        line1 = self._get_row()
        if line1 != _correct_line1:
            if "**COMPRESSED**" in line1:
                # this was created with the PROC CPORT method and can't be read
                # https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/movefile/p1bm6aqp3fw4uin1hucwh718f6kp.htm
                raise ValueError(
                    "Header record indicates a CPORT file, which is not readable."
                )
            raise ValueError("Header record is not an XPORT file.")
 
        line2 = self._get_row()
        fif = [["prefix", 24], ["version", 8], ["OS", 8], ["_", 24], ["created", 16]]
        file_info = _split_line(line2, fif)
        if file_info["prefix"] != "SAS     SAS     SASLIB":
            raise ValueError("Header record has invalid prefix.")
        file_info["created"] = _parse_date(file_info["created"])
        self.file_info = file_info
 
        line3 = self._get_row()
        file_info["modified"] = _parse_date(line3[:16])
 
        # read member header
        header1 = self._get_row()
        header2 = self._get_row()
        headflag1 = header1.startswith(_correct_header1)
        headflag2 = header2 == _correct_header2
        if not (headflag1 and headflag2):
            raise ValueError("Member header not found")
        # usually 140, could be 135
        fieldnamelength = int(header1[-5:-2])
 
        # member info
        mem = [
            ["prefix", 8],
            ["set_name", 8],
            ["sasdata", 8],
            ["version", 8],
            ["OS", 8],
            ["_", 24],
            ["created", 16],
        ]
        member_info = _split_line(self._get_row(), mem)
        mem = [["modified", 16], ["_", 16], ["label", 40], ["type", 8]]
        member_info.update(_split_line(self._get_row(), mem))
        member_info["modified"] = _parse_date(member_info["modified"])
        member_info["created"] = _parse_date(member_info["created"])
        self.member_info = member_info
 
        # read field names
        types = {1: "numeric", 2: "char"}
        fieldcount = int(self._get_row()[54:58])
        datalength = fieldnamelength * fieldcount
        # round up to nearest 80
        if datalength % 80:
            datalength += 80 - datalength % 80
        fielddata = self.filepath_or_buffer.read(datalength)
        fields = []
        obs_length = 0
        while len(fielddata) >= fieldnamelength:
            # pull data for one field
            fieldbytes, fielddata = (
                fielddata[:fieldnamelength],
                fielddata[fieldnamelength:],
            )
 
            # rest at end gets ignored, so if field is short, pad out
            # to match struct pattern below
            fieldbytes = fieldbytes.ljust(140)
 
            fieldstruct = struct.unpack(">hhhh8s40s8shhh2s8shhl52s", fieldbytes)
            field = dict(zip(_fieldkeys, fieldstruct))
            del field["_"]
            field["ntype"] = types[field["ntype"]]
            fl = field["field_length"]
            if field["ntype"] == "numeric" and ((fl < 2) or (fl > 8)):
                msg = f"Floating field width {fl} is not between 2 and 8."
                raise TypeError(msg)
 
            for k, v in field.items():
                try:
                    field[k] = v.strip()
                except AttributeError:
                    pass
 
            obs_length += field["field_length"]
            fields += [field]
 
        header = self._get_row()
        if not header == _correct_obs_header:
            raise ValueError("Observation header not found.")
 
        self.fields = fields
        self.record_length = obs_length
        self.record_start = self.filepath_or_buffer.tell()
 
        self.nobs = self._record_count()
        self.columns = [x["name"].decode() for x in self.fields]
 
        # Setup the dtype.
        dtypel = [
            ("s" + str(i), "S" + str(field["field_length"]))
            for i, field in enumerate(self.fields)
        ]
        dtype = np.dtype(dtypel)
        self._dtype = dtype
 
    def __next__(self) -> pd.DataFrame:
        return self.read(nrows=self._chunksize or 1)
 
    def _record_count(self) -> int:
        """
        Get number of records in file.
 
        This is maybe suboptimal because we have to seek to the end of
        the file.
 
        Side effect: returns file position to record_start.
        """
        self.filepath_or_buffer.seek(0, 2)
        total_records_length = self.filepath_or_buffer.tell() - self.record_start
 
        if total_records_length % 80 != 0:
            warnings.warn(
                "xport file may be corrupted.",
                stacklevel=find_stack_level(),
            )
 
        if self.record_length > 80:
            self.filepath_or_buffer.seek(self.record_start)
            return total_records_length // self.record_length
 
        self.filepath_or_buffer.seek(-80, 2)
        last_card_bytes = self.filepath_or_buffer.read(80)
        last_card = np.frombuffer(last_card_bytes, dtype=np.uint64)
 
        # 8 byte blank
        ix = np.flatnonzero(last_card == 2314885530818453536)
 
        if len(ix) == 0:
            tail_pad = 0
        else:
            tail_pad = 8 * len(ix)
 
        self.filepath_or_buffer.seek(self.record_start)
 
        return (total_records_length - tail_pad) // self.record_length
 
    def get_chunk(self, size=None) -> pd.DataFrame:
        """
        Reads lines from Xport file and returns as dataframe
 
        Parameters
        ----------
        size : int, defaults to None
            Number of lines to read.  If None, reads whole file.
 
        Returns
        -------
        DataFrame
        """
        if size is None:
            size = self._chunksize
        return self.read(nrows=size)
 
    def _missing_double(self, vec):
        v = vec.view(dtype="u1,u1,u2,u4")
        miss = (v["f1"] == 0) & (v["f2"] == 0) & (v["f3"] == 0)
        miss1 = (
            ((v["f0"] >= 0x41) & (v["f0"] <= 0x5A))
            | (v["f0"] == 0x5F)
            | (v["f0"] == 0x2E)
        )
        miss &= miss1
        return miss
 
    @Appender(_read_method_doc)
    def read(self, nrows: int | None = None) -> pd.DataFrame:
        if nrows is None:
            nrows = self.nobs
 
        read_lines = min(nrows, self.nobs - self._lines_read)
        read_len = read_lines * self.record_length
        if read_len <= 0:
            self.close()
            raise StopIteration
        raw = self.filepath_or_buffer.read(read_len)
        data = np.frombuffer(raw, dtype=self._dtype, count=read_lines)
 
        df_data = {}
        for j, x in enumerate(self.columns):
            vec = data["s" + str(j)]
            ntype = self.fields[j]["ntype"]
            if ntype == "numeric":
                vec = _handle_truncated_float_vec(vec, self.fields[j]["field_length"])
                miss = self._missing_double(vec)
                v = _parse_float_vec(vec)
                v[miss] = np.nan
            elif self.fields[j]["ntype"] == "char":
                v = [y.rstrip() for y in vec]
 
                if self._encoding is not None:
                    v = [y.decode(self._encoding) for y in v]
 
            df_data.update({x: v})
        df = pd.DataFrame(df_data)
 
        if self._index is None:
            df.index = pd.Index(range(self._lines_read, self._lines_read + read_lines))
        else:
            df = df.set_index(self._index)
 
        self._lines_read += read_lines
 
        return df