zmc
2023-08-08 e792e9a60d958b93aef96050644f369feb25d61b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
"""
This module is imported from the pandas package __init__.py file
in order to ensure that the core.config options registered here will
be available as soon as the user loads the package. if register_option
is invoked inside specific modules, they will not be registered until that
module is imported, which may or may not be a problem.
 
If you need to make sure options are available even before a certain
module is imported, register them here rather than in the module.
 
"""
from __future__ import annotations
 
import os
from typing import Callable
 
import pandas._config.config as cf
from pandas._config.config import (
    is_bool,
    is_callable,
    is_instance_factory,
    is_int,
    is_nonnegative_int,
    is_one_of_factory,
    is_str,
    is_text,
)
 
# compute
 
use_bottleneck_doc = """
: bool
    Use the bottleneck library to accelerate if it is installed,
    the default is True
    Valid values: False,True
"""
 
 
def use_bottleneck_cb(key) -> None:
    from pandas.core import nanops
 
    nanops.set_use_bottleneck(cf.get_option(key))
 
 
use_numexpr_doc = """
: bool
    Use the numexpr library to accelerate computation if it is installed,
    the default is True
    Valid values: False,True
"""
 
 
def use_numexpr_cb(key) -> None:
    from pandas.core.computation import expressions
 
    expressions.set_use_numexpr(cf.get_option(key))
 
 
use_numba_doc = """
: bool
    Use the numba engine option for select operations if it is installed,
    the default is False
    Valid values: False,True
"""
 
 
def use_numba_cb(key) -> None:
    from pandas.core.util import numba_
 
    numba_.set_use_numba(cf.get_option(key))
 
 
with cf.config_prefix("compute"):
    cf.register_option(
        "use_bottleneck",
        True,
        use_bottleneck_doc,
        validator=is_bool,
        cb=use_bottleneck_cb,
    )
    cf.register_option(
        "use_numexpr", True, use_numexpr_doc, validator=is_bool, cb=use_numexpr_cb
    )
    cf.register_option(
        "use_numba", False, use_numba_doc, validator=is_bool, cb=use_numba_cb
    )
#
# options from the "display" namespace
 
pc_precision_doc = """
: int
    Floating point output precision in terms of number of places after the
    decimal, for regular formatting as well as scientific notation. Similar
    to ``precision`` in :meth:`numpy.set_printoptions`.
"""
 
pc_colspace_doc = """
: int
    Default space for DataFrame columns.
"""
 
pc_max_rows_doc = """
: int
    If max_rows is exceeded, switch to truncate view. Depending on
    `large_repr`, objects are either centrally truncated or printed as
    a summary view. 'None' value means unlimited.
 
    In case python/IPython is running in a terminal and `large_repr`
    equals 'truncate' this can be set to 0 and pandas will auto-detect
    the height of the terminal and print a truncated object which fits
    the screen height. The IPython notebook, IPython qtconsole, or
    IDLE do not run in a terminal and hence it is not possible to do
    correct auto-detection.
"""
 
pc_min_rows_doc = """
: int
    The numbers of rows to show in a truncated view (when `max_rows` is
    exceeded). Ignored when `max_rows` is set to None or 0. When set to
    None, follows the value of `max_rows`.
"""
 
pc_max_cols_doc = """
: int
    If max_cols is exceeded, switch to truncate view. Depending on
    `large_repr`, objects are either centrally truncated or printed as
    a summary view. 'None' value means unlimited.
 
    In case python/IPython is running in a terminal and `large_repr`
    equals 'truncate' this can be set to 0 or None and pandas will auto-detect
    the width of the terminal and print a truncated object which fits
    the screen width. The IPython notebook, IPython qtconsole, or IDLE
    do not run in a terminal and hence it is not possible to do
    correct auto-detection and defaults to 20.
"""
 
pc_max_categories_doc = """
: int
    This sets the maximum number of categories pandas should output when
    printing out a `Categorical` or a Series of dtype "category".
"""
 
pc_max_info_cols_doc = """
: int
    max_info_columns is used in DataFrame.info method to decide if
    per column information will be printed.
"""
 
pc_nb_repr_h_doc = """
: boolean
    When True, IPython notebook will use html representation for
    pandas objects (if it is available).
"""
 
pc_pprint_nest_depth = """
: int
    Controls the number of nested levels to process when pretty-printing
"""
 
pc_multi_sparse_doc = """
: boolean
    "sparsify" MultiIndex display (don't display repeated
    elements in outer levels within groups)
"""
 
float_format_doc = """
: callable
    The callable should accept a floating point number and return
    a string with the desired format of the number. This is used
    in some places like SeriesFormatter.
    See formats.format.EngFormatter for an example.
"""
 
max_colwidth_doc = """
: int or None
    The maximum width in characters of a column in the repr of
    a pandas data structure. When the column overflows, a "..."
    placeholder is embedded in the output. A 'None' value means unlimited.
"""
 
colheader_justify_doc = """
: 'left'/'right'
    Controls the justification of column headers. used by DataFrameFormatter.
"""
 
pc_expand_repr_doc = """
: boolean
    Whether to print out the full DataFrame repr for wide DataFrames across
    multiple lines, `max_columns` is still respected, but the output will
    wrap-around across multiple "pages" if its width exceeds `display.width`.
"""
 
pc_show_dimensions_doc = """
: boolean or 'truncate'
    Whether to print out dimensions at the end of DataFrame repr.
    If 'truncate' is specified, only print out the dimensions if the
    frame is truncated (e.g. not display all rows and/or columns)
"""
 
pc_east_asian_width_doc = """
: boolean
    Whether to use the Unicode East Asian Width to calculate the display text
    width.
    Enabling this may affect to the performance (default: False)
"""
 
pc_ambiguous_as_wide_doc = """
: boolean
    Whether to handle Unicode characters belong to Ambiguous as Wide (width=2)
    (default: False)
"""
 
pc_table_schema_doc = """
: boolean
    Whether to publish a Table Schema representation for frontends
    that support it.
    (default: False)
"""
 
pc_html_border_doc = """
: int
    A ``border=value`` attribute is inserted in the ``<table>`` tag
    for the DataFrame HTML repr.
"""
 
pc_html_use_mathjax_doc = """\
: boolean
    When True, Jupyter notebook will process table contents using MathJax,
    rendering mathematical expressions enclosed by the dollar symbol.
    (default: True)
"""
 
pc_max_dir_items = """\
: int
    The number of items that will be added to `dir(...)`. 'None' value means
    unlimited. Because dir is cached, changing this option will not immediately
    affect already existing dataframes until a column is deleted or added.
 
    This is for instance used to suggest columns from a dataframe to tab
    completion.
"""
 
pc_width_doc = """
: int
    Width of the display in characters. In case python/IPython is running in
    a terminal this can be set to None and pandas will correctly auto-detect
    the width.
    Note that the IPython notebook, IPython qtconsole, or IDLE do not run in a
    terminal and hence it is not possible to correctly detect the width.
"""
 
pc_chop_threshold_doc = """
: float or None
    if set to a float value, all float values smaller than the given threshold
    will be displayed as exactly 0 by repr and friends.
"""
 
pc_max_seq_items = """
: int or None
    When pretty-printing a long sequence, no more then `max_seq_items`
    will be printed. If items are omitted, they will be denoted by the
    addition of "..." to the resulting string.
 
    If set to None, the number of items to be printed is unlimited.
"""
 
pc_max_info_rows_doc = """
: int or None
    df.info() will usually show null-counts for each column.
    For large frames this can be quite slow. max_info_rows and max_info_cols
    limit this null check only to frames with smaller dimensions than
    specified.
"""
 
pc_large_repr_doc = """
: 'truncate'/'info'
    For DataFrames exceeding max_rows/max_cols, the repr (and HTML repr) can
    show a truncated table (the default from 0.13), or switch to the view from
    df.info() (the behaviour in earlier versions of pandas).
"""
 
pc_memory_usage_doc = """
: bool, string or None
    This specifies if the memory usage of a DataFrame should be displayed when
    df.info() is called. Valid values True,False,'deep'
"""
 
 
def table_schema_cb(key) -> None:
    from pandas.io.formats.printing import enable_data_resource_formatter
 
    enable_data_resource_formatter(cf.get_option(key))
 
 
def is_terminal() -> bool:
    """
    Detect if Python is running in a terminal.
 
    Returns True if Python is running in a terminal or False if not.
    """
    try:
        # error: Name 'get_ipython' is not defined
        ip = get_ipython()  # type: ignore[name-defined]
    except NameError:  # assume standard Python interpreter in a terminal
        return True
    else:
        if hasattr(ip, "kernel"):  # IPython as a Jupyter kernel
            return False
        else:  # IPython in a terminal
            return True
 
 
with cf.config_prefix("display"):
    cf.register_option("precision", 6, pc_precision_doc, validator=is_nonnegative_int)
    cf.register_option(
        "float_format",
        None,
        float_format_doc,
        validator=is_one_of_factory([None, is_callable]),
    )
    cf.register_option(
        "max_info_rows",
        1690785,
        pc_max_info_rows_doc,
        validator=is_instance_factory((int, type(None))),
    )
    cf.register_option("max_rows", 60, pc_max_rows_doc, validator=is_nonnegative_int)
    cf.register_option(
        "min_rows",
        10,
        pc_min_rows_doc,
        validator=is_instance_factory([type(None), int]),
    )
    cf.register_option("max_categories", 8, pc_max_categories_doc, validator=is_int)
 
    cf.register_option(
        "max_colwidth",
        50,
        max_colwidth_doc,
        validator=is_nonnegative_int,
    )
    if is_terminal():
        max_cols = 0  # automatically determine optimal number of columns
    else:
        max_cols = 20  # cannot determine optimal number of columns
    cf.register_option(
        "max_columns", max_cols, pc_max_cols_doc, validator=is_nonnegative_int
    )
    cf.register_option(
        "large_repr",
        "truncate",
        pc_large_repr_doc,
        validator=is_one_of_factory(["truncate", "info"]),
    )
    cf.register_option("max_info_columns", 100, pc_max_info_cols_doc, validator=is_int)
    cf.register_option(
        "colheader_justify", "right", colheader_justify_doc, validator=is_text
    )
    cf.register_option("notebook_repr_html", True, pc_nb_repr_h_doc, validator=is_bool)
    cf.register_option("pprint_nest_depth", 3, pc_pprint_nest_depth, validator=is_int)
    cf.register_option("multi_sparse", True, pc_multi_sparse_doc, validator=is_bool)
    cf.register_option("expand_frame_repr", True, pc_expand_repr_doc)
    cf.register_option(
        "show_dimensions",
        "truncate",
        pc_show_dimensions_doc,
        validator=is_one_of_factory([True, False, "truncate"]),
    )
    cf.register_option("chop_threshold", None, pc_chop_threshold_doc)
    cf.register_option("max_seq_items", 100, pc_max_seq_items)
    cf.register_option(
        "width", 80, pc_width_doc, validator=is_instance_factory([type(None), int])
    )
    cf.register_option(
        "memory_usage",
        True,
        pc_memory_usage_doc,
        validator=is_one_of_factory([None, True, False, "deep"]),
    )
    cf.register_option(
        "unicode.east_asian_width", False, pc_east_asian_width_doc, validator=is_bool
    )
    cf.register_option(
        "unicode.ambiguous_as_wide", False, pc_east_asian_width_doc, validator=is_bool
    )
    cf.register_option(
        "html.table_schema",
        False,
        pc_table_schema_doc,
        validator=is_bool,
        cb=table_schema_cb,
    )
    cf.register_option("html.border", 1, pc_html_border_doc, validator=is_int)
    cf.register_option(
        "html.use_mathjax", True, pc_html_use_mathjax_doc, validator=is_bool
    )
    cf.register_option(
        "max_dir_items", 100, pc_max_dir_items, validator=is_nonnegative_int
    )
 
tc_sim_interactive_doc = """
: boolean
    Whether to simulate interactive mode for purposes of testing
"""
 
with cf.config_prefix("mode"):
    cf.register_option("sim_interactive", False, tc_sim_interactive_doc)
 
use_inf_as_na_doc = """
: boolean
    True means treat None, NaN, INF, -INF as NA (old way),
    False means None and NaN are null, but INF, -INF are not NA
    (new way).
"""
 
# We don't want to start importing everything at the global context level
# or we'll hit circular deps.
 
 
def use_inf_as_na_cb(key) -> None:
    from pandas.core.dtypes.missing import _use_inf_as_na
 
    _use_inf_as_na(key)
 
 
with cf.config_prefix("mode"):
    cf.register_option("use_inf_as_na", False, use_inf_as_na_doc, cb=use_inf_as_na_cb)
 
 
data_manager_doc = """
: string
    Internal data manager type; can be "block" or "array". Defaults to "block",
    unless overridden by the 'PANDAS_DATA_MANAGER' environment variable (needs
    to be set before pandas is imported).
"""
 
 
with cf.config_prefix("mode"):
    cf.register_option(
        "data_manager",
        # Get the default from an environment variable, if set, otherwise defaults
        # to "block". This environment variable can be set for testing.
        os.environ.get("PANDAS_DATA_MANAGER", "block"),
        data_manager_doc,
        validator=is_one_of_factory(["block", "array"]),
    )
 
 
# TODO better name?
copy_on_write_doc = """
: bool
    Use new copy-view behaviour using Copy-on-Write. Defaults to False,
    unless overridden by the 'PANDAS_COPY_ON_WRITE' environment variable
    (if set to "1" for True, needs to be set before pandas is imported).
"""
 
 
with cf.config_prefix("mode"):
    cf.register_option(
        "copy_on_write",
        # Get the default from an environment variable, if set, otherwise defaults
        # to False. This environment variable can be set for testing.
        os.environ.get("PANDAS_COPY_ON_WRITE", "0") == "1",
        copy_on_write_doc,
        validator=is_bool,
    )
 
 
# user warnings
chained_assignment = """
: string
    Raise an exception, warn, or no action if trying to use chained assignment,
    The default is warn
"""
 
with cf.config_prefix("mode"):
    cf.register_option(
        "chained_assignment",
        "warn",
        chained_assignment,
        validator=is_one_of_factory([None, "warn", "raise"]),
    )
 
 
string_storage_doc = """
: string
    The default storage for StringDtype.
"""
 
with cf.config_prefix("mode"):
    cf.register_option(
        "string_storage",
        "python",
        string_storage_doc,
        validator=is_one_of_factory(["python", "pyarrow"]),
    )
 
 
# Set up the io.excel specific reader configuration.
reader_engine_doc = """
: string
    The default Excel reader engine for '{ext}' files. Available options:
    auto, {others}.
"""
 
_xls_options = ["xlrd"]
_xlsm_options = ["xlrd", "openpyxl"]
_xlsx_options = ["xlrd", "openpyxl"]
_ods_options = ["odf"]
_xlsb_options = ["pyxlsb"]
 
 
with cf.config_prefix("io.excel.xls"):
    cf.register_option(
        "reader",
        "auto",
        reader_engine_doc.format(ext="xls", others=", ".join(_xls_options)),
        validator=is_one_of_factory(_xls_options + ["auto"]),
    )
 
with cf.config_prefix("io.excel.xlsm"):
    cf.register_option(
        "reader",
        "auto",
        reader_engine_doc.format(ext="xlsm", others=", ".join(_xlsm_options)),
        validator=is_one_of_factory(_xlsm_options + ["auto"]),
    )
 
 
with cf.config_prefix("io.excel.xlsx"):
    cf.register_option(
        "reader",
        "auto",
        reader_engine_doc.format(ext="xlsx", others=", ".join(_xlsx_options)),
        validator=is_one_of_factory(_xlsx_options + ["auto"]),
    )
 
 
with cf.config_prefix("io.excel.ods"):
    cf.register_option(
        "reader",
        "auto",
        reader_engine_doc.format(ext="ods", others=", ".join(_ods_options)),
        validator=is_one_of_factory(_ods_options + ["auto"]),
    )
 
with cf.config_prefix("io.excel.xlsb"):
    cf.register_option(
        "reader",
        "auto",
        reader_engine_doc.format(ext="xlsb", others=", ".join(_xlsb_options)),
        validator=is_one_of_factory(_xlsb_options + ["auto"]),
    )
 
# Set up the io.excel specific writer configuration.
writer_engine_doc = """
: string
    The default Excel writer engine for '{ext}' files. Available options:
    auto, {others}.
"""
 
_xlsm_options = ["openpyxl"]
_xlsx_options = ["openpyxl", "xlsxwriter"]
_ods_options = ["odf"]
 
 
with cf.config_prefix("io.excel.xlsm"):
    cf.register_option(
        "writer",
        "auto",
        writer_engine_doc.format(ext="xlsm", others=", ".join(_xlsm_options)),
        validator=str,
    )
 
 
with cf.config_prefix("io.excel.xlsx"):
    cf.register_option(
        "writer",
        "auto",
        writer_engine_doc.format(ext="xlsx", others=", ".join(_xlsx_options)),
        validator=str,
    )
 
 
with cf.config_prefix("io.excel.ods"):
    cf.register_option(
        "writer",
        "auto",
        writer_engine_doc.format(ext="ods", others=", ".join(_ods_options)),
        validator=str,
    )
 
 
# Set up the io.parquet specific configuration.
parquet_engine_doc = """
: string
    The default parquet reader/writer engine. Available options:
    'auto', 'pyarrow', 'fastparquet', the default is 'auto'
"""
 
with cf.config_prefix("io.parquet"):
    cf.register_option(
        "engine",
        "auto",
        parquet_engine_doc,
        validator=is_one_of_factory(["auto", "pyarrow", "fastparquet"]),
    )
 
 
# Set up the io.sql specific configuration.
sql_engine_doc = """
: string
    The default sql reader/writer engine. Available options:
    'auto', 'sqlalchemy', the default is 'auto'
"""
 
with cf.config_prefix("io.sql"):
    cf.register_option(
        "engine",
        "auto",
        sql_engine_doc,
        validator=is_one_of_factory(["auto", "sqlalchemy"]),
    )
 
# --------
# Plotting
# ---------
 
plotting_backend_doc = """
: str
    The plotting backend to use. The default value is "matplotlib", the
    backend provided with pandas. Other backends can be specified by
    providing the name of the module that implements the backend.
"""
 
 
def register_plotting_backend_cb(key) -> None:
    if key == "matplotlib":
        # We defer matplotlib validation, since it's the default
        return
    from pandas.plotting._core import _get_plot_backend
 
    _get_plot_backend(key)
 
 
with cf.config_prefix("plotting"):
    cf.register_option(
        "backend",
        defval="matplotlib",
        doc=plotting_backend_doc,
        validator=register_plotting_backend_cb,
    )
 
 
register_converter_doc = """
: bool or 'auto'.
    Whether to register converters with matplotlib's units registry for
    dates, times, datetimes, and Periods. Toggling to False will remove
    the converters, restoring any converters that pandas overwrote.
"""
 
 
def register_converter_cb(key) -> None:
    from pandas.plotting import (
        deregister_matplotlib_converters,
        register_matplotlib_converters,
    )
 
    if cf.get_option(key):
        register_matplotlib_converters()
    else:
        deregister_matplotlib_converters()
 
 
with cf.config_prefix("plotting.matplotlib"):
    cf.register_option(
        "register_converters",
        "auto",
        register_converter_doc,
        validator=is_one_of_factory(["auto", True, False]),
        cb=register_converter_cb,
    )
 
# ------
# Styler
# ------
 
styler_sparse_index_doc = """
: bool
    Whether to sparsify the display of a hierarchical index. Setting to False will
    display each explicit level element in a hierarchical key for each row.
"""
 
styler_sparse_columns_doc = """
: bool
    Whether to sparsify the display of hierarchical columns. Setting to False will
    display each explicit level element in a hierarchical key for each column.
"""
 
styler_render_repr = """
: str
    Determine which output to use in Jupyter Notebook in {"html", "latex"}.
"""
 
styler_max_elements = """
: int
    The maximum number of data-cell (<td>) elements that will be rendered before
    trimming will occur over columns, rows or both if needed.
"""
 
styler_max_rows = """
: int, optional
    The maximum number of rows that will be rendered. May still be reduced to
    satsify ``max_elements``, which takes precedence.
"""
 
styler_max_columns = """
: int, optional
    The maximum number of columns that will be rendered. May still be reduced to
    satsify ``max_elements``, which takes precedence.
"""
 
styler_precision = """
: int
    The precision for floats and complex numbers.
"""
 
styler_decimal = """
: str
    The character representation for the decimal separator for floats and complex.
"""
 
styler_thousands = """
: str, optional
    The character representation for thousands separator for floats, int and complex.
"""
 
styler_na_rep = """
: str, optional
    The string representation for values identified as missing.
"""
 
styler_escape = """
: str, optional
    Whether to escape certain characters according to the given context; html or latex.
"""
 
styler_formatter = """
: str, callable, dict, optional
    A formatter object to be used as default within ``Styler.format``.
"""
 
styler_multirow_align = """
: {"c", "t", "b"}
    The specifier for vertical alignment of sparsified LaTeX multirows.
"""
 
styler_multicol_align = r"""
: {"r", "c", "l", "naive-l", "naive-r"}
    The specifier for horizontal alignment of sparsified LaTeX multicolumns. Pipe
    decorators can also be added to non-naive values to draw vertical
    rules, e.g. "\|r" will draw a rule on the left side of right aligned merged cells.
"""
 
styler_hrules = """
: bool
    Whether to add horizontal rules on top and bottom and below the headers.
"""
 
styler_environment = """
: str
    The environment to replace ``\\begin{table}``. If "longtable" is used results
    in a specific longtable environment format.
"""
 
styler_encoding = """
: str
    The encoding used for output HTML and LaTeX files.
"""
 
styler_mathjax = """
: bool
    If False will render special CSS classes to table attributes that indicate Mathjax
    will not be used in Jupyter Notebook.
"""
 
with cf.config_prefix("styler"):
    cf.register_option("sparse.index", True, styler_sparse_index_doc, validator=is_bool)
 
    cf.register_option(
        "sparse.columns", True, styler_sparse_columns_doc, validator=is_bool
    )
 
    cf.register_option(
        "render.repr",
        "html",
        styler_render_repr,
        validator=is_one_of_factory(["html", "latex"]),
    )
 
    cf.register_option(
        "render.max_elements",
        2**18,
        styler_max_elements,
        validator=is_nonnegative_int,
    )
 
    cf.register_option(
        "render.max_rows",
        None,
        styler_max_rows,
        validator=is_nonnegative_int,
    )
 
    cf.register_option(
        "render.max_columns",
        None,
        styler_max_columns,
        validator=is_nonnegative_int,
    )
 
    cf.register_option("render.encoding", "utf-8", styler_encoding, validator=is_str)
 
    cf.register_option("format.decimal", ".", styler_decimal, validator=is_str)
 
    cf.register_option(
        "format.precision", 6, styler_precision, validator=is_nonnegative_int
    )
 
    cf.register_option(
        "format.thousands",
        None,
        styler_thousands,
        validator=is_instance_factory([type(None), str]),
    )
 
    cf.register_option(
        "format.na_rep",
        None,
        styler_na_rep,
        validator=is_instance_factory([type(None), str]),
    )
 
    cf.register_option(
        "format.escape",
        None,
        styler_escape,
        validator=is_one_of_factory([None, "html", "latex"]),
    )
 
    cf.register_option(
        "format.formatter",
        None,
        styler_formatter,
        validator=is_instance_factory([type(None), dict, Callable, str]),
    )
 
    cf.register_option("html.mathjax", True, styler_mathjax, validator=is_bool)
 
    cf.register_option(
        "latex.multirow_align",
        "c",
        styler_multirow_align,
        validator=is_one_of_factory(["c", "t", "b", "naive"]),
    )
 
    val_mca = ["r", "|r|", "|r", "r|", "c", "|c|", "|c", "c|", "l", "|l|", "|l", "l|"]
    val_mca += ["naive-l", "naive-r"]
    cf.register_option(
        "latex.multicol_align",
        "r",
        styler_multicol_align,
        validator=is_one_of_factory(val_mca),
    )
 
    cf.register_option("latex.hrules", False, styler_hrules, validator=is_bool)
 
    cf.register_option(
        "latex.environment",
        None,
        styler_environment,
        validator=is_instance_factory([type(None), str]),
    )