zmc
2023-08-08 e792e9a60d958b93aef96050644f369feb25d61b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
cimport cython
from cpython.mem cimport (
    PyMem_Free,
    PyMem_Malloc,
)
from cpython.ref cimport (
    Py_INCREF,
    PyObject,
)
from libc.stdlib cimport (
    free,
    malloc,
)
 
import numpy as np
 
cimport numpy as cnp
from numpy cimport ndarray
 
cnp.import_array()
 
 
from pandas._libs cimport util
from pandas._libs.dtypes cimport numeric_object_t
from pandas._libs.khash cimport (
    KHASH_TRACE_DOMAIN,
    are_equivalent_float32_t,
    are_equivalent_float64_t,
    are_equivalent_khcomplex64_t,
    are_equivalent_khcomplex128_t,
    kh_needed_n_buckets,
    kh_python_hash_equal,
    kh_python_hash_func,
    khiter_t,
)
from pandas._libs.missing cimport checknull
 
 
def get_hashtable_trace_domain():
    return KHASH_TRACE_DOMAIN
 
 
def object_hash(obj):
    return kh_python_hash_func(obj)
 
 
def objects_are_equal(a, b):
    return kh_python_hash_equal(a, b)
 
 
cdef int64_t NPY_NAT = util.get_nat()
SIZE_HINT_LIMIT = (1 << 20) + 7
 
 
cdef Py_ssize_t _INIT_VEC_CAP = 128
 
include "hashtable_class_helper.pxi"
include "hashtable_func_helper.pxi"
 
 
# map derived hash-map types onto basic hash-map types:
if np.dtype(np.intp) == np.dtype(np.int64):
    IntpHashTable = Int64HashTable
    unique_label_indices = _unique_label_indices_int64
elif np.dtype(np.intp) == np.dtype(np.int32):
    IntpHashTable = Int32HashTable
    unique_label_indices = _unique_label_indices_int32
else:
    raise ValueError(np.dtype(np.intp))
 
 
cdef class Factorizer:
    cdef readonly:
        Py_ssize_t count
 
    def __cinit__(self, size_hint: int):
        self.count = 0
 
    def get_count(self) -> int:
        return self.count
 
    def factorize(self, values, na_sentinel=-1, na_value=None, mask=None) -> np.ndarray:
        raise NotImplementedError
 
 
cdef class ObjectFactorizer(Factorizer):
    cdef public:
        PyObjectHashTable table
        ObjectVector uniques
 
    def __cinit__(self, size_hint: int):
        self.table = PyObjectHashTable(size_hint)
        self.uniques = ObjectVector()
 
    def factorize(
        self, ndarray[object] values, na_sentinel=-1, na_value=None, mask=None
    ) -> np.ndarray:
        """
 
        Returns
        -------
        np.ndarray[np.intp]
 
        Examples
        --------
        Factorize values with nans replaced by na_sentinel
 
        >>> fac = ObjectFactorizer(3)
        >>> fac.factorize(np.array([1,2,np.nan], dtype='O'), na_sentinel=20)
        array([ 0,  1, 20])
        """
        cdef:
            ndarray[intp_t] labels
 
        if mask is not None:
            raise NotImplementedError("mask not supported for ObjectFactorizer.")
 
        if self.uniques.external_view_exists:
            uniques = ObjectVector()
            uniques.extend(self.uniques.to_array())
            self.uniques = uniques
        labels = self.table.get_labels(values, self.uniques,
                                       self.count, na_sentinel, na_value)
        self.count = len(self.uniques)
        return labels