1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
| import numpy as np
| import pytest
|
| from pandas.errors import DataError
|
| from pandas.core.dtypes.common import pandas_dtype
|
| from pandas import (
| NA,
| DataFrame,
| Series,
| )
| import pandas._testing as tm
|
| # gh-12373 : rolling functions error on float32 data
| # make sure rolling functions works for different dtypes
| #
| # further note that we are only checking rolling for fully dtype
| # compliance (though both expanding and ewm inherit)
|
|
| def get_dtype(dtype, coerce_int=None):
| if coerce_int is False and "int" in dtype:
| return None
| return pandas_dtype(dtype)
|
|
| @pytest.fixture(
| params=[
| "object",
| "category",
| "int8",
| "int16",
| "int32",
| "int64",
| "uint8",
| "uint16",
| "uint32",
| "uint64",
| "float16",
| "float32",
| "float64",
| "m8[ns]",
| "M8[ns]",
| "datetime64[ns, UTC]",
| ]
| )
| def dtypes(request):
| """Dtypes for window tests"""
| return request.param
|
|
| @pytest.mark.parametrize(
| "method, data, expected_data, coerce_int, min_periods",
| [
| ("count", np.arange(5), [1, 2, 2, 2, 2], True, 0),
| ("count", np.arange(10, 0, -2), [1, 2, 2, 2, 2], True, 0),
| ("count", [0, 1, 2, np.nan, 4], [1, 2, 2, 1, 1], False, 0),
| ("max", np.arange(5), [np.nan, 1, 2, 3, 4], True, None),
| ("max", np.arange(10, 0, -2), [np.nan, 10, 8, 6, 4], True, None),
| ("max", [0, 1, 2, np.nan, 4], [np.nan, 1, 2, np.nan, np.nan], False, None),
| ("min", np.arange(5), [np.nan, 0, 1, 2, 3], True, None),
| ("min", np.arange(10, 0, -2), [np.nan, 8, 6, 4, 2], True, None),
| ("min", [0, 1, 2, np.nan, 4], [np.nan, 0, 1, np.nan, np.nan], False, None),
| ("sum", np.arange(5), [np.nan, 1, 3, 5, 7], True, None),
| ("sum", np.arange(10, 0, -2), [np.nan, 18, 14, 10, 6], True, None),
| ("sum", [0, 1, 2, np.nan, 4], [np.nan, 1, 3, np.nan, np.nan], False, None),
| ("mean", np.arange(5), [np.nan, 0.5, 1.5, 2.5, 3.5], True, None),
| ("mean", np.arange(10, 0, -2), [np.nan, 9, 7, 5, 3], True, None),
| ("mean", [0, 1, 2, np.nan, 4], [np.nan, 0.5, 1.5, np.nan, np.nan], False, None),
| ("std", np.arange(5), [np.nan] + [np.sqrt(0.5)] * 4, True, None),
| ("std", np.arange(10, 0, -2), [np.nan] + [np.sqrt(2)] * 4, True, None),
| (
| "std",
| [0, 1, 2, np.nan, 4],
| [np.nan] + [np.sqrt(0.5)] * 2 + [np.nan] * 2,
| False,
| None,
| ),
| ("var", np.arange(5), [np.nan, 0.5, 0.5, 0.5, 0.5], True, None),
| ("var", np.arange(10, 0, -2), [np.nan, 2, 2, 2, 2], True, None),
| ("var", [0, 1, 2, np.nan, 4], [np.nan, 0.5, 0.5, np.nan, np.nan], False, None),
| ("median", np.arange(5), [np.nan, 0.5, 1.5, 2.5, 3.5], True, None),
| ("median", np.arange(10, 0, -2), [np.nan, 9, 7, 5, 3], True, None),
| (
| "median",
| [0, 1, 2, np.nan, 4],
| [np.nan, 0.5, 1.5, np.nan, np.nan],
| False,
| None,
| ),
| ],
| )
| def test_series_dtypes(
| method, data, expected_data, coerce_int, dtypes, min_periods, step
| ):
| ser = Series(data, dtype=get_dtype(dtypes, coerce_int=coerce_int))
| rolled = ser.rolling(2, min_periods=min_periods, step=step)
|
| if dtypes in ("m8[ns]", "M8[ns]", "datetime64[ns, UTC]") and method != "count":
| msg = "No numeric types to aggregate"
| with pytest.raises(DataError, match=msg):
| getattr(rolled, method)()
| else:
| result = getattr(rolled, method)()
| expected = Series(expected_data, dtype="float64")[::step]
| tm.assert_almost_equal(result, expected)
|
|
| def test_series_nullable_int(any_signed_int_ea_dtype, step):
| # GH 43016
| ser = Series([0, 1, NA], dtype=any_signed_int_ea_dtype)
| result = ser.rolling(2, step=step).mean()
| expected = Series([np.nan, 0.5, np.nan])[::step]
| tm.assert_series_equal(result, expected)
|
|
| @pytest.mark.parametrize(
| "method, expected_data, min_periods",
| [
| ("count", {0: Series([1, 2, 2, 2, 2]), 1: Series([1, 2, 2, 2, 2])}, 0),
| (
| "max",
| {0: Series([np.nan, 2, 4, 6, 8]), 1: Series([np.nan, 3, 5, 7, 9])},
| None,
| ),
| (
| "min",
| {0: Series([np.nan, 0, 2, 4, 6]), 1: Series([np.nan, 1, 3, 5, 7])},
| None,
| ),
| (
| "sum",
| {0: Series([np.nan, 2, 6, 10, 14]), 1: Series([np.nan, 4, 8, 12, 16])},
| None,
| ),
| (
| "mean",
| {0: Series([np.nan, 1, 3, 5, 7]), 1: Series([np.nan, 2, 4, 6, 8])},
| None,
| ),
| (
| "std",
| {
| 0: Series([np.nan] + [np.sqrt(2)] * 4),
| 1: Series([np.nan] + [np.sqrt(2)] * 4),
| },
| None,
| ),
| (
| "var",
| {0: Series([np.nan, 2, 2, 2, 2]), 1: Series([np.nan, 2, 2, 2, 2])},
| None,
| ),
| (
| "median",
| {0: Series([np.nan, 1, 3, 5, 7]), 1: Series([np.nan, 2, 4, 6, 8])},
| None,
| ),
| ],
| )
| def test_dataframe_dtypes(method, expected_data, dtypes, min_periods, step):
| df = DataFrame(np.arange(10).reshape((5, 2)), dtype=get_dtype(dtypes))
| rolled = df.rolling(2, min_periods=min_periods, step=step)
|
| if dtypes in ("m8[ns]", "M8[ns]", "datetime64[ns, UTC]") and method != "count":
| msg = "Cannot aggregate non-numeric type"
| with pytest.raises(DataError, match=msg):
| getattr(rolled, method)()
| else:
| result = getattr(rolled, method)()
| expected = DataFrame(expected_data, dtype="float64")[::step]
| tm.assert_frame_equal(result, expected)
|
|