1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
import decimal
 
import numpy as np
from numpy import iinfo
import pytest
 
import pandas as pd
from pandas import (
    ArrowDtype,
    DataFrame,
    Index,
    Series,
    to_numeric,
)
import pandas._testing as tm
 
 
@pytest.fixture(params=[None, "ignore", "raise", "coerce"])
def errors(request):
    return request.param
 
 
@pytest.fixture(params=[True, False])
def signed(request):
    return request.param
 
 
@pytest.fixture(params=[lambda x: x, str], ids=["identity", "str"])
def transform(request):
    return request.param
 
 
@pytest.fixture(params=[47393996303418497800, 100000000000000000000])
def large_val(request):
    return request.param
 
 
@pytest.fixture(params=[True, False])
def multiple_elts(request):
    return request.param
 
 
@pytest.fixture(
    params=[
        (lambda x: Index(x, name="idx"), tm.assert_index_equal),
        (lambda x: Series(x, name="ser"), tm.assert_series_equal),
        (lambda x: np.array(Index(x).values), tm.assert_numpy_array_equal),
    ]
)
def transform_assert_equal(request):
    return request.param
 
 
@pytest.mark.parametrize(
    "input_kwargs,result_kwargs",
    [
        ({}, {"dtype": np.int64}),
        ({"errors": "coerce", "downcast": "integer"}, {"dtype": np.int8}),
    ],
)
def test_empty(input_kwargs, result_kwargs):
    # see gh-16302
    ser = Series([], dtype=object)
    result = to_numeric(ser, **input_kwargs)
 
    expected = Series([], **result_kwargs)
    tm.assert_series_equal(result, expected)
 
 
@pytest.mark.parametrize("last_val", ["7", 7])
def test_series(last_val):
    ser = Series(["1", "-3.14", last_val])
    result = to_numeric(ser)
 
    expected = Series([1, -3.14, 7])
    tm.assert_series_equal(result, expected)
 
 
@pytest.mark.parametrize(
    "data",
    [
        [1, 3, 4, 5],
        [1.0, 3.0, 4.0, 5.0],
        # Bool is regarded as numeric.
        [True, False, True, True],
    ],
)
def test_series_numeric(data):
    ser = Series(data, index=list("ABCD"), name="EFG")
 
    result = to_numeric(ser)
    tm.assert_series_equal(result, ser)
 
 
@pytest.mark.parametrize(
    "data,msg",
    [
        ([1, -3.14, "apple"], 'Unable to parse string "apple" at position 2'),
        (
            ["orange", 1, -3.14, "apple"],
            'Unable to parse string "orange" at position 0',
        ),
    ],
)
def test_error(data, msg):
    ser = Series(data)
 
    with pytest.raises(ValueError, match=msg):
        to_numeric(ser, errors="raise")
 
 
@pytest.mark.parametrize(
    "errors,exp_data", [("ignore", [1, -3.14, "apple"]), ("coerce", [1, -3.14, np.nan])]
)
def test_ignore_error(errors, exp_data):
    ser = Series([1, -3.14, "apple"])
    result = to_numeric(ser, errors=errors)
 
    expected = Series(exp_data)
    tm.assert_series_equal(result, expected)
 
 
@pytest.mark.parametrize(
    "errors,exp",
    [
        ("raise", 'Unable to parse string "apple" at position 2'),
        ("ignore", [True, False, "apple"]),
        # Coerces to float.
        ("coerce", [1.0, 0.0, np.nan]),
    ],
)
def test_bool_handling(errors, exp):
    ser = Series([True, False, "apple"])
 
    if isinstance(exp, str):
        with pytest.raises(ValueError, match=exp):
            to_numeric(ser, errors=errors)
    else:
        result = to_numeric(ser, errors=errors)
        expected = Series(exp)
 
        tm.assert_series_equal(result, expected)
 
 
def test_list():
    ser = ["1", "-3.14", "7"]
    res = to_numeric(ser)
 
    expected = np.array([1, -3.14, 7])
    tm.assert_numpy_array_equal(res, expected)
 
 
@pytest.mark.parametrize(
    "data,arr_kwargs",
    [
        ([1, 3, 4, 5], {"dtype": np.int64}),
        ([1.0, 3.0, 4.0, 5.0], {}),
        # Boolean is regarded as numeric.
        ([True, False, True, True], {}),
    ],
)
def test_list_numeric(data, arr_kwargs):
    result = to_numeric(data)
    expected = np.array(data, **arr_kwargs)
    tm.assert_numpy_array_equal(result, expected)
 
 
@pytest.mark.parametrize("kwargs", [{"dtype": "O"}, {}])
def test_numeric(kwargs):
    data = [1, -3.14, 7]
 
    ser = Series(data, **kwargs)
    result = to_numeric(ser)
 
    expected = Series(data)
    tm.assert_series_equal(result, expected)
 
 
@pytest.mark.parametrize(
    "columns",
    [
        # One column.
        "a",
        # Multiple columns.
        ["a", "b"],
    ],
)
def test_numeric_df_columns(columns):
    # see gh-14827
    df = DataFrame(
        {
            "a": [1.2, decimal.Decimal(3.14), decimal.Decimal("infinity"), "0.1"],
            "b": [1.0, 2.0, 3.0, 4.0],
        }
    )
 
    expected = DataFrame({"a": [1.2, 3.14, np.inf, 0.1], "b": [1.0, 2.0, 3.0, 4.0]})
 
    df_copy = df.copy()
    df_copy[columns] = df_copy[columns].apply(to_numeric)
 
    tm.assert_frame_equal(df_copy, expected)
 
 
@pytest.mark.parametrize(
    "data,exp_data",
    [
        (
            [[decimal.Decimal(3.14), 1.0], decimal.Decimal(1.6), 0.1],
            [[3.14, 1.0], 1.6, 0.1],
        ),
        ([np.array([decimal.Decimal(3.14), 1.0]), 0.1], [[3.14, 1.0], 0.1]),
    ],
)
def test_numeric_embedded_arr_likes(data, exp_data):
    # Test to_numeric with embedded lists and arrays
    df = DataFrame({"a": data})
    df["a"] = df["a"].apply(to_numeric)
 
    expected = DataFrame({"a": exp_data})
    tm.assert_frame_equal(df, expected)
 
 
def test_all_nan():
    ser = Series(["a", "b", "c"])
    result = to_numeric(ser, errors="coerce")
 
    expected = Series([np.nan, np.nan, np.nan])
    tm.assert_series_equal(result, expected)
 
 
def test_type_check(errors):
    # see gh-11776
    df = DataFrame({"a": [1, -3.14, 7], "b": ["4", "5", "6"]})
    kwargs = {"errors": errors} if errors is not None else {}
    with pytest.raises(TypeError, match="1-d array"):
        to_numeric(df, **kwargs)
 
 
@pytest.mark.parametrize("val", [1, 1.1, 20001])
def test_scalar(val, signed, transform):
    val = -val if signed else val
    assert to_numeric(transform(val)) == float(val)
 
 
def test_really_large_scalar(large_val, signed, transform, errors):
    # see gh-24910
    kwargs = {"errors": errors} if errors is not None else {}
    val = -large_val if signed else large_val
 
    val = transform(val)
    val_is_string = isinstance(val, str)
 
    if val_is_string and errors in (None, "raise"):
        msg = "Integer out of range. at position 0"
        with pytest.raises(ValueError, match=msg):
            to_numeric(val, **kwargs)
    else:
        expected = float(val) if (errors == "coerce" and val_is_string) else val
        tm.assert_almost_equal(to_numeric(val, **kwargs), expected)
 
 
def test_really_large_in_arr(large_val, signed, transform, multiple_elts, errors):
    # see gh-24910
    kwargs = {"errors": errors} if errors is not None else {}
    val = -large_val if signed else large_val
    val = transform(val)
 
    extra_elt = "string"
    arr = [val] + multiple_elts * [extra_elt]
 
    val_is_string = isinstance(val, str)
    coercing = errors == "coerce"
 
    if errors in (None, "raise") and (val_is_string or multiple_elts):
        if val_is_string:
            msg = "Integer out of range. at position 0"
        else:
            msg = 'Unable to parse string "string" at position 1'
 
        with pytest.raises(ValueError, match=msg):
            to_numeric(arr, **kwargs)
    else:
        result = to_numeric(arr, **kwargs)
 
        exp_val = float(val) if (coercing and val_is_string) else val
        expected = [exp_val]
 
        if multiple_elts:
            if coercing:
                expected.append(np.nan)
                exp_dtype = float
            else:
                expected.append(extra_elt)
                exp_dtype = object
        else:
            exp_dtype = float if isinstance(exp_val, (int, float)) else object
 
        tm.assert_almost_equal(result, np.array(expected, dtype=exp_dtype))
 
 
def test_really_large_in_arr_consistent(large_val, signed, multiple_elts, errors):
    # see gh-24910
    #
    # Even if we discover that we have to hold float, does not mean
    # we should be lenient on subsequent elements that fail to be integer.
    kwargs = {"errors": errors} if errors is not None else {}
    arr = [str(-large_val if signed else large_val)]
 
    if multiple_elts:
        arr.insert(0, large_val)
 
    if errors in (None, "raise"):
        index = int(multiple_elts)
        msg = f"Integer out of range. at position {index}"
 
        with pytest.raises(ValueError, match=msg):
            to_numeric(arr, **kwargs)
    else:
        result = to_numeric(arr, **kwargs)
 
        if errors == "coerce":
            expected = [float(i) for i in arr]
            exp_dtype = float
        else:
            expected = arr
            exp_dtype = object
 
        tm.assert_almost_equal(result, np.array(expected, dtype=exp_dtype))
 
 
@pytest.mark.parametrize(
    "errors,checker",
    [
        ("raise", 'Unable to parse string "fail" at position 0'),
        ("ignore", lambda x: x == "fail"),
        ("coerce", lambda x: np.isnan(x)),
    ],
)
def test_scalar_fail(errors, checker):
    scalar = "fail"
 
    if isinstance(checker, str):
        with pytest.raises(ValueError, match=checker):
            to_numeric(scalar, errors=errors)
    else:
        assert checker(to_numeric(scalar, errors=errors))
 
 
@pytest.mark.parametrize("data", [[1, 2, 3], [1.0, np.nan, 3, np.nan]])
def test_numeric_dtypes(data, transform_assert_equal):
    transform, assert_equal = transform_assert_equal
    data = transform(data)
 
    result = to_numeric(data)
    assert_equal(result, data)
 
 
@pytest.mark.parametrize(
    "data,exp",
    [
        (["1", "2", "3"], np.array([1, 2, 3], dtype="int64")),
        (["1.5", "2.7", "3.4"], np.array([1.5, 2.7, 3.4])),
    ],
)
def test_str(data, exp, transform_assert_equal):
    transform, assert_equal = transform_assert_equal
    result = to_numeric(transform(data))
 
    expected = transform(exp)
    assert_equal(result, expected)
 
 
def test_datetime_like(tz_naive_fixture, transform_assert_equal):
    transform, assert_equal = transform_assert_equal
    idx = pd.date_range("20130101", periods=3, tz=tz_naive_fixture)
 
    result = to_numeric(transform(idx))
    expected = transform(idx.asi8)
    assert_equal(result, expected)
 
 
def test_timedelta(transform_assert_equal):
    transform, assert_equal = transform_assert_equal
    idx = pd.timedelta_range("1 days", periods=3, freq="D")
 
    result = to_numeric(transform(idx))
    expected = transform(idx.asi8)
    assert_equal(result, expected)
 
 
def test_period(request, transform_assert_equal):
    transform, assert_equal = transform_assert_equal
 
    idx = pd.period_range("2011-01", periods=3, freq="M", name="")
    inp = transform(idx)
 
    if not isinstance(inp, Index):
        request.node.add_marker(
            pytest.mark.xfail(reason="Missing PeriodDtype support in to_numeric")
        )
    result = to_numeric(inp)
    expected = transform(idx.asi8)
    assert_equal(result, expected)
 
 
@pytest.mark.parametrize(
    "errors,expected",
    [
        ("raise", "Invalid object type at position 0"),
        ("ignore", Series([[10.0, 2], 1.0, "apple"])),
        ("coerce", Series([np.nan, 1.0, np.nan])),
    ],
)
def test_non_hashable(errors, expected):
    # see gh-13324
    ser = Series([[10.0, 2], 1.0, "apple"])
 
    if isinstance(expected, str):
        with pytest.raises(TypeError, match=expected):
            to_numeric(ser, errors=errors)
    else:
        result = to_numeric(ser, errors=errors)
        tm.assert_series_equal(result, expected)
 
 
def test_downcast_invalid_cast():
    # see gh-13352
    data = ["1", 2, 3]
    invalid_downcast = "unsigned-integer"
    msg = "invalid downcasting method provided"
 
    with pytest.raises(ValueError, match=msg):
        to_numeric(data, downcast=invalid_downcast)
 
 
def test_errors_invalid_value():
    # see gh-26466
    data = ["1", 2, 3]
    invalid_error_value = "invalid"
    msg = "invalid error value specified"
 
    with pytest.raises(ValueError, match=msg):
        to_numeric(data, errors=invalid_error_value)
 
 
@pytest.mark.parametrize(
    "data",
    [
        ["1", 2, 3],
        [1, 2, 3],
        np.array(["1970-01-02", "1970-01-03", "1970-01-04"], dtype="datetime64[D]"),
    ],
)
@pytest.mark.parametrize(
    "kwargs,exp_dtype",
    [
        # Basic function tests.
        ({}, np.int64),
        ({"downcast": None}, np.int64),
        # Support below np.float32 is rare and far between.
        ({"downcast": "float"}, np.dtype(np.float32).char),
        # Basic dtype support.
        ({"downcast": "unsigned"}, np.dtype(np.typecodes["UnsignedInteger"][0])),
    ],
)
def test_downcast_basic(data, kwargs, exp_dtype):
    # see gh-13352
    result = to_numeric(data, **kwargs)
    expected = np.array([1, 2, 3], dtype=exp_dtype)
    tm.assert_numpy_array_equal(result, expected)
 
 
@pytest.mark.parametrize("signed_downcast", ["integer", "signed"])
@pytest.mark.parametrize(
    "data",
    [
        ["1", 2, 3],
        [1, 2, 3],
        np.array(["1970-01-02", "1970-01-03", "1970-01-04"], dtype="datetime64[D]"),
    ],
)
def test_signed_downcast(data, signed_downcast):
    # see gh-13352
    smallest_int_dtype = np.dtype(np.typecodes["Integer"][0])
    expected = np.array([1, 2, 3], dtype=smallest_int_dtype)
 
    res = to_numeric(data, downcast=signed_downcast)
    tm.assert_numpy_array_equal(res, expected)
 
 
def test_ignore_downcast_invalid_data():
    # If we can't successfully cast the given
    # data to a numeric dtype, do not bother
    # with the downcast parameter.
    data = ["foo", 2, 3]
    expected = np.array(data, dtype=object)
 
    res = to_numeric(data, errors="ignore", downcast="unsigned")
    tm.assert_numpy_array_equal(res, expected)
 
 
def test_ignore_downcast_neg_to_unsigned():
    # Cannot cast to an unsigned integer
    # because we have a negative number.
    data = ["-1", 2, 3]
    expected = np.array([-1, 2, 3], dtype=np.int64)
 
    res = to_numeric(data, downcast="unsigned")
    tm.assert_numpy_array_equal(res, expected)
 
 
@pytest.mark.parametrize("downcast", ["integer", "signed", "unsigned"])
@pytest.mark.parametrize(
    "data,expected",
    [
        (["1.1", 2, 3], np.array([1.1, 2, 3], dtype=np.float64)),
        (
            [10000.0, 20000, 3000, 40000.36, 50000, 50000.00],
            np.array(
                [10000.0, 20000, 3000, 40000.36, 50000, 50000.00], dtype=np.float64
            ),
        ),
    ],
)
def test_ignore_downcast_cannot_convert_float(data, expected, downcast):
    # Cannot cast to an integer (signed or unsigned)
    # because we have a float number.
    res = to_numeric(data, downcast=downcast)
    tm.assert_numpy_array_equal(res, expected)
 
 
@pytest.mark.parametrize(
    "downcast,expected_dtype",
    [("integer", np.int16), ("signed", np.int16), ("unsigned", np.uint16)],
)
def test_downcast_not8bit(downcast, expected_dtype):
    # the smallest integer dtype need not be np.(u)int8
    data = ["256", 257, 258]
 
    expected = np.array([256, 257, 258], dtype=expected_dtype)
    res = to_numeric(data, downcast=downcast)
    tm.assert_numpy_array_equal(res, expected)
 
 
@pytest.mark.parametrize(
    "dtype,downcast,min_max",
    [
        ("int8", "integer", [iinfo(np.int8).min, iinfo(np.int8).max]),
        ("int16", "integer", [iinfo(np.int16).min, iinfo(np.int16).max]),
        ("int32", "integer", [iinfo(np.int32).min, iinfo(np.int32).max]),
        ("int64", "integer", [iinfo(np.int64).min, iinfo(np.int64).max]),
        ("uint8", "unsigned", [iinfo(np.uint8).min, iinfo(np.uint8).max]),
        ("uint16", "unsigned", [iinfo(np.uint16).min, iinfo(np.uint16).max]),
        ("uint32", "unsigned", [iinfo(np.uint32).min, iinfo(np.uint32).max]),
        ("uint64", "unsigned", [iinfo(np.uint64).min, iinfo(np.uint64).max]),
        ("int16", "integer", [iinfo(np.int8).min, iinfo(np.int8).max + 1]),
        ("int32", "integer", [iinfo(np.int16).min, iinfo(np.int16).max + 1]),
        ("int64", "integer", [iinfo(np.int32).min, iinfo(np.int32).max + 1]),
        ("int16", "integer", [iinfo(np.int8).min - 1, iinfo(np.int16).max]),
        ("int32", "integer", [iinfo(np.int16).min - 1, iinfo(np.int32).max]),
        ("int64", "integer", [iinfo(np.int32).min - 1, iinfo(np.int64).max]),
        ("uint16", "unsigned", [iinfo(np.uint8).min, iinfo(np.uint8).max + 1]),
        ("uint32", "unsigned", [iinfo(np.uint16).min, iinfo(np.uint16).max + 1]),
        ("uint64", "unsigned", [iinfo(np.uint32).min, iinfo(np.uint32).max + 1]),
    ],
)
def test_downcast_limits(dtype, downcast, min_max):
    # see gh-14404: test the limits of each downcast.
    series = to_numeric(Series(min_max), downcast=downcast)
    assert series.dtype == dtype
 
 
def test_downcast_float64_to_float32():
    # GH-43693: Check float64 preservation when >= 16,777,217
    series = Series([16777217.0, np.finfo(np.float64).max, np.nan], dtype=np.float64)
    result = to_numeric(series, downcast="float")
 
    assert series.dtype == result.dtype
 
 
@pytest.mark.parametrize(
    "ser,expected",
    [
        (
            Series([0, 9223372036854775808]),
            Series([0, 9223372036854775808], dtype=np.uint64),
        )
    ],
)
def test_downcast_uint64(ser, expected):
    # see gh-14422:
    # BUG: to_numeric doesn't work uint64 numbers
 
    result = to_numeric(ser, downcast="unsigned")
 
    tm.assert_series_equal(result, expected)
 
 
@pytest.mark.parametrize(
    "data,exp_data",
    [
        (
            [200, 300, "", "NaN", 30000000000000000000],
            [200, 300, np.nan, np.nan, 30000000000000000000],
        ),
        (
            ["12345678901234567890", "1234567890", "ITEM"],
            [12345678901234567890, 1234567890, np.nan],
        ),
    ],
)
def test_coerce_uint64_conflict(data, exp_data):
    # see gh-17007 and gh-17125
    #
    # Still returns float despite the uint64-nan conflict,
    # which would normally force the casting to object.
    result = to_numeric(Series(data), errors="coerce")
    expected = Series(exp_data, dtype=float)
    tm.assert_series_equal(result, expected)
 
 
@pytest.mark.parametrize(
    "errors,exp",
    [
        ("ignore", Series(["12345678901234567890", "1234567890", "ITEM"])),
        ("raise", "Unable to parse string"),
    ],
)
def test_non_coerce_uint64_conflict(errors, exp):
    # see gh-17007 and gh-17125
    #
    # For completeness.
    ser = Series(["12345678901234567890", "1234567890", "ITEM"])
 
    if isinstance(exp, str):
        with pytest.raises(ValueError, match=exp):
            to_numeric(ser, errors=errors)
    else:
        result = to_numeric(ser, errors=errors)
        tm.assert_series_equal(result, ser)
 
 
@pytest.mark.parametrize("dc1", ["integer", "float", "unsigned"])
@pytest.mark.parametrize("dc2", ["integer", "float", "unsigned"])
def test_downcast_empty(dc1, dc2):
    # GH32493
 
    tm.assert_numpy_array_equal(
        to_numeric([], downcast=dc1),
        to_numeric([], downcast=dc2),
        check_dtype=False,
    )
 
 
def test_failure_to_convert_uint64_string_to_NaN():
    # GH 32394
    result = to_numeric("uint64", errors="coerce")
    assert np.isnan(result)
 
    ser = Series([32, 64, np.nan])
    result = to_numeric(Series(["32", "64", "uint64"]), errors="coerce")
    tm.assert_series_equal(result, ser)
 
 
@pytest.mark.parametrize(
    "strrep",
    [
        "243.164",
        "245.968",
        "249.585",
        "259.745",
        "265.742",
        "272.567",
        "279.196",
        "280.366",
        "275.034",
        "271.351",
        "272.889",
        "270.627",
        "280.828",
        "290.383",
        "308.153",
        "319.945",
        "336.0",
        "344.09",
        "351.385",
        "356.178",
        "359.82",
        "361.03",
        "367.701",
        "380.812",
        "387.98",
        "391.749",
        "391.171",
        "385.97",
        "385.345",
        "386.121",
        "390.996",
        "399.734",
        "413.073",
        "421.532",
        "430.221",
        "437.092",
        "439.746",
        "446.01",
        "451.191",
        "460.463",
        "469.779",
        "472.025",
        "479.49",
        "474.864",
        "467.54",
        "471.978",
    ],
)
def test_precision_float_conversion(strrep):
    # GH 31364
    result = to_numeric(strrep)
 
    assert result == float(strrep)
 
 
@pytest.mark.parametrize(
    "values, expected",
    [
        (["1", "2", None], Series([1, 2, np.nan], dtype="Int64")),
        (["1", "2", "3"], Series([1, 2, 3], dtype="Int64")),
        (["1", "2", 3], Series([1, 2, 3], dtype="Int64")),
        (["1", "2", 3.5], Series([1, 2, 3.5], dtype="Float64")),
        (["1", None, 3.5], Series([1, np.nan, 3.5], dtype="Float64")),
        (["1", "2", "3.5"], Series([1, 2, 3.5], dtype="Float64")),
    ],
)
def test_to_numeric_from_nullable_string(values, nullable_string_dtype, expected):
    # https://github.com/pandas-dev/pandas/issues/37262
    s = Series(values, dtype=nullable_string_dtype)
    result = to_numeric(s)
    tm.assert_series_equal(result, expected)
 
 
def test_to_numeric_from_nullable_string_coerce(nullable_string_dtype):
    # GH#52146
    values = ["a", "1"]
    ser = Series(values, dtype=nullable_string_dtype)
    result = to_numeric(ser, errors="coerce")
    expected = Series([pd.NA, 1], dtype="Int64")
    tm.assert_series_equal(result, expected)
 
 
def test_to_numeric_from_nullable_string_ignore(nullable_string_dtype):
    # GH#52146
    values = ["a", "1"]
    ser = Series(values, dtype=nullable_string_dtype)
    expected = ser.copy()
    result = to_numeric(ser, errors="ignore")
    tm.assert_series_equal(result, expected)
 
 
@pytest.mark.parametrize(
    "data, input_dtype, downcast, expected_dtype",
    (
        ([1, 1], "Int64", "integer", "Int8"),
        ([1.0, pd.NA], "Float64", "integer", "Int8"),
        ([1.0, 1.1], "Float64", "integer", "Float64"),
        ([1, pd.NA], "Int64", "integer", "Int8"),
        ([450, 300], "Int64", "integer", "Int16"),
        ([1, 1], "Float64", "integer", "Int8"),
        ([np.iinfo(np.int64).max - 1, 1], "Int64", "integer", "Int64"),
        ([1, 1], "Int64", "signed", "Int8"),
        ([1.0, 1.0], "Float32", "signed", "Int8"),
        ([1.0, 1.1], "Float64", "signed", "Float64"),
        ([1, pd.NA], "Int64", "signed", "Int8"),
        ([450, -300], "Int64", "signed", "Int16"),
        ([np.iinfo(np.uint64).max - 1, 1], "UInt64", "signed", "UInt64"),
        ([1, 1], "Int64", "unsigned", "UInt8"),
        ([1.0, 1.0], "Float32", "unsigned", "UInt8"),
        ([1.0, 1.1], "Float64", "unsigned", "Float64"),
        ([1, pd.NA], "Int64", "unsigned", "UInt8"),
        ([450, -300], "Int64", "unsigned", "Int64"),
        ([-1, -1], "Int32", "unsigned", "Int32"),
        ([1, 1], "Float64", "float", "Float32"),
        ([1, 1.1], "Float64", "float", "Float32"),
        ([1, 1], "Float32", "float", "Float32"),
        ([1, 1.1], "Float32", "float", "Float32"),
    ),
)
def test_downcast_nullable_numeric(data, input_dtype, downcast, expected_dtype):
    arr = pd.array(data, dtype=input_dtype)
    result = to_numeric(arr, downcast=downcast)
    expected = pd.array(data, dtype=expected_dtype)
    tm.assert_extension_array_equal(result, expected)
 
 
def test_downcast_nullable_mask_is_copied():
    # GH38974
 
    arr = pd.array([1, 2, pd.NA], dtype="Int64")
 
    result = to_numeric(arr, downcast="integer")
    expected = pd.array([1, 2, pd.NA], dtype="Int8")
    tm.assert_extension_array_equal(result, expected)
 
    arr[1] = pd.NA  # should not modify result
    tm.assert_extension_array_equal(result, expected)
 
 
def test_to_numeric_scientific_notation():
    # GH 15898
    result = to_numeric("1.7e+308")
    expected = np.float64(1.7e308)
    assert result == expected
 
 
@pytest.mark.parametrize("val", [9876543210.0, 2.0**128])
def test_to_numeric_large_float_not_downcast_to_float_32(val):
    # GH 19729
    expected = Series([val])
    result = to_numeric(expected, downcast="float")
    tm.assert_series_equal(result, expected)
 
 
@pytest.mark.parametrize(
    "val, dtype", [(1, "Int64"), (1.5, "Float64"), (True, "boolean")]
)
def test_to_numeric_dtype_backend(val, dtype):
    # GH#50505
    ser = Series([val], dtype=object)
    result = to_numeric(ser, dtype_backend="numpy_nullable")
    expected = Series([val], dtype=dtype)
    tm.assert_series_equal(result, expected)
 
 
@pytest.mark.parametrize(
    "val, dtype",
    [
        (1, "Int64"),
        (1.5, "Float64"),
        (True, "boolean"),
        (1, "int64[pyarrow]"),
        (1.5, "float64[pyarrow]"),
        (True, "bool[pyarrow]"),
    ],
)
def test_to_numeric_dtype_backend_na(val, dtype):
    # GH#50505
    if "pyarrow" in dtype:
        pytest.importorskip("pyarrow")
        dtype_backend = "pyarrow"
    else:
        dtype_backend = "numpy_nullable"
    ser = Series([val, None], dtype=object)
    result = to_numeric(ser, dtype_backend=dtype_backend)
    expected = Series([val, pd.NA], dtype=dtype)
    tm.assert_series_equal(result, expected)
 
 
@pytest.mark.parametrize(
    "val, dtype, downcast",
    [
        (1, "Int8", "integer"),
        (1.5, "Float32", "float"),
        (1, "Int8", "signed"),
        (1, "int8[pyarrow]", "integer"),
        (1.5, "float[pyarrow]", "float"),
        (1, "int8[pyarrow]", "signed"),
    ],
)
def test_to_numeric_dtype_backend_downcasting(val, dtype, downcast):
    # GH#50505
    if "pyarrow" in dtype:
        pytest.importorskip("pyarrow")
        dtype_backend = "pyarrow"
    else:
        dtype_backend = "numpy_nullable"
    ser = Series([val, None], dtype=object)
    result = to_numeric(ser, dtype_backend=dtype_backend, downcast=downcast)
    expected = Series([val, pd.NA], dtype=dtype)
    tm.assert_series_equal(result, expected)
 
 
@pytest.mark.parametrize(
    "smaller, dtype_backend",
    [["UInt8", "numpy_nullable"], ["uint8[pyarrow]", "pyarrow"]],
)
def test_to_numeric_dtype_backend_downcasting_uint(smaller, dtype_backend):
    # GH#50505
    if dtype_backend == "pyarrow":
        pytest.importorskip("pyarrow")
    ser = Series([1, pd.NA], dtype="UInt64")
    result = to_numeric(ser, dtype_backend=dtype_backend, downcast="unsigned")
    expected = Series([1, pd.NA], dtype=smaller)
    tm.assert_series_equal(result, expected)
 
 
@pytest.mark.parametrize(
    "dtype",
    [
        "Int64",
        "UInt64",
        "Float64",
        "boolean",
        "int64[pyarrow]",
        "uint64[pyarrow]",
        "float64[pyarrow]",
        "bool[pyarrow]",
    ],
)
def test_to_numeric_dtype_backend_already_nullable(dtype):
    # GH#50505
    if "pyarrow" in dtype:
        pytest.importorskip("pyarrow")
    ser = Series([1, pd.NA], dtype=dtype)
    result = to_numeric(ser, dtype_backend="numpy_nullable")
    expected = Series([1, pd.NA], dtype=dtype)
    tm.assert_series_equal(result, expected)
 
 
def test_to_numeric_dtype_backend_error(dtype_backend):
    # GH#50505
    ser = Series(["a", "b", ""])
    expected = ser.copy()
    with pytest.raises(ValueError, match="Unable to parse string"):
        to_numeric(ser, dtype_backend=dtype_backend)
 
    result = to_numeric(ser, dtype_backend=dtype_backend, errors="ignore")
    tm.assert_series_equal(result, expected)
 
    result = to_numeric(ser, dtype_backend=dtype_backend, errors="coerce")
    if dtype_backend == "pyarrow":
        dtype = "double[pyarrow]"
    else:
        dtype = "Float64"
    expected = Series([np.nan, np.nan, np.nan], dtype=dtype)
    tm.assert_series_equal(result, expected)
 
 
def test_invalid_dtype_backend():
    ser = Series([1, 2, 3])
    msg = (
        "dtype_backend numpy is invalid, only 'numpy_nullable' and "
        "'pyarrow' are allowed."
    )
    with pytest.raises(ValueError, match=msg):
        to_numeric(ser, dtype_backend="numpy")
 
 
def test_coerce_pyarrow_backend():
    # GH 52588
    pa = pytest.importorskip("pyarrow")
    ser = Series(list("12x"), dtype=ArrowDtype(pa.string()))
    result = to_numeric(ser, errors="coerce", dtype_backend="pyarrow")
    expected = Series([1, 2, None], dtype=ArrowDtype(pa.int64()))
    tm.assert_series_equal(result, expected)