1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
from pathlib import Path
 
import numpy as np
import pytest
 
import pandas as pd
import pandas._testing as tm
 
pyreadstat = pytest.importorskip("pyreadstat")
 
 
# TODO(CoW) - detection of chained assignment in cython
# https://github.com/pandas-dev/pandas/issues/51315
@pytest.mark.filterwarnings("ignore::pandas.errors.ChainedAssignmentError")
@pytest.mark.parametrize("path_klass", [lambda p: p, Path])
def test_spss_labelled_num(path_klass, datapath):
    # test file from the Haven project (https://haven.tidyverse.org/)
    fname = path_klass(datapath("io", "data", "spss", "labelled-num.sav"))
 
    df = pd.read_spss(fname, convert_categoricals=True)
    expected = pd.DataFrame({"VAR00002": "This is one"}, index=[0])
    expected["VAR00002"] = pd.Categorical(expected["VAR00002"])
    tm.assert_frame_equal(df, expected)
 
    df = pd.read_spss(fname, convert_categoricals=False)
    expected = pd.DataFrame({"VAR00002": 1.0}, index=[0])
    tm.assert_frame_equal(df, expected)
 
 
@pytest.mark.filterwarnings("ignore::pandas.errors.ChainedAssignmentError")
def test_spss_labelled_num_na(datapath):
    # test file from the Haven project (https://haven.tidyverse.org/)
    fname = datapath("io", "data", "spss", "labelled-num-na.sav")
 
    df = pd.read_spss(fname, convert_categoricals=True)
    expected = pd.DataFrame({"VAR00002": ["This is one", None]})
    expected["VAR00002"] = pd.Categorical(expected["VAR00002"])
    tm.assert_frame_equal(df, expected)
 
    df = pd.read_spss(fname, convert_categoricals=False)
    expected = pd.DataFrame({"VAR00002": [1.0, np.nan]})
    tm.assert_frame_equal(df, expected)
 
 
@pytest.mark.filterwarnings("ignore::pandas.errors.ChainedAssignmentError")
def test_spss_labelled_str(datapath):
    # test file from the Haven project (https://haven.tidyverse.org/)
    fname = datapath("io", "data", "spss", "labelled-str.sav")
 
    df = pd.read_spss(fname, convert_categoricals=True)
    expected = pd.DataFrame({"gender": ["Male", "Female"]})
    expected["gender"] = pd.Categorical(expected["gender"])
    tm.assert_frame_equal(df, expected)
 
    df = pd.read_spss(fname, convert_categoricals=False)
    expected = pd.DataFrame({"gender": ["M", "F"]})
    tm.assert_frame_equal(df, expected)
 
 
@pytest.mark.filterwarnings("ignore::pandas.errors.ChainedAssignmentError")
def test_spss_umlauts(datapath):
    # test file from the Haven project (https://haven.tidyverse.org/)
    fname = datapath("io", "data", "spss", "umlauts.sav")
 
    df = pd.read_spss(fname, convert_categoricals=True)
    expected = pd.DataFrame(
        {"var1": ["the ä umlaut", "the ü umlaut", "the ä umlaut", "the ö umlaut"]}
    )
    expected["var1"] = pd.Categorical(expected["var1"])
    tm.assert_frame_equal(df, expected)
 
    df = pd.read_spss(fname, convert_categoricals=False)
    expected = pd.DataFrame({"var1": [1.0, 2.0, 1.0, 3.0]})
    tm.assert_frame_equal(df, expected)
 
 
def test_spss_usecols(datapath):
    # usecols must be list-like
    fname = datapath("io", "data", "spss", "labelled-num.sav")
 
    with pytest.raises(TypeError, match="usecols must be list-like."):
        pd.read_spss(fname, usecols="VAR00002")
 
 
def test_spss_umlauts_dtype_backend(datapath, dtype_backend):
    # test file from the Haven project (https://haven.tidyverse.org/)
    fname = datapath("io", "data", "spss", "umlauts.sav")
 
    df = pd.read_spss(fname, convert_categoricals=False, dtype_backend=dtype_backend)
    expected = pd.DataFrame({"var1": [1.0, 2.0, 1.0, 3.0]}, dtype="Int64")
 
    if dtype_backend == "pyarrow":
        pa = pytest.importorskip("pyarrow")
 
        from pandas.arrays import ArrowExtensionArray
 
        expected = pd.DataFrame(
            {
                col: ArrowExtensionArray(pa.array(expected[col], from_pandas=True))
                for col in expected.columns
            }
        )
 
    tm.assert_frame_equal(df, expected)
 
 
def test_invalid_dtype_backend():
    msg = (
        "dtype_backend numpy is invalid, only 'numpy_nullable' and "
        "'pyarrow' are allowed."
    )
    with pytest.raises(ValueError, match=msg):
        pd.read_spss("test", dtype_backend="numpy")