1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import numpy as np
import pytest
 
import pandas.util._test_decorators as td
 
from pandas import (
    DataFrame,
    MultiIndex,
    date_range,
    to_datetime,
)
import pandas._testing as tm
 
 
class TestMultiIndexPartial:
    def test_getitem_partial_int(self):
        # GH 12416
        # with single item
        l1 = [10, 20]
        l2 = ["a", "b"]
        df = DataFrame(index=range(2), columns=MultiIndex.from_product([l1, l2]))
        expected = DataFrame(index=range(2), columns=l2)
        result = df[20]
        tm.assert_frame_equal(result, expected)
 
        # with list
        expected = DataFrame(
            index=range(2), columns=MultiIndex.from_product([l1[1:], l2])
        )
        result = df[[20]]
        tm.assert_frame_equal(result, expected)
 
        # missing item:
        with pytest.raises(KeyError, match="1"):
            df[1]
        with pytest.raises(KeyError, match=r"'\[1\] not in index'"):
            df[[1]]
 
    def test_series_slice_partial(self):
        pass
 
    def test_xs_partial(
        self,
        multiindex_dataframe_random_data,
        multiindex_year_month_day_dataframe_random_data,
    ):
        frame = multiindex_dataframe_random_data
        ymd = multiindex_year_month_day_dataframe_random_data
        result = frame.xs("foo")
        result2 = frame.loc["foo"]
        expected = frame.T["foo"].T
        tm.assert_frame_equal(result, expected)
        tm.assert_frame_equal(result, result2)
 
        result = ymd.xs((2000, 4))
        expected = ymd.loc[2000, 4]
        tm.assert_frame_equal(result, expected)
 
        # ex from #1796
        index = MultiIndex(
            levels=[["foo", "bar"], ["one", "two"], [-1, 1]],
            codes=[
                [0, 0, 0, 0, 1, 1, 1, 1],
                [0, 0, 1, 1, 0, 0, 1, 1],
                [0, 1, 0, 1, 0, 1, 0, 1],
            ],
        )
        df = DataFrame(np.random.randn(8, 4), index=index, columns=list("abcd"))
 
        result = df.xs(("foo", "one"))
        expected = df.loc["foo", "one"]
        tm.assert_frame_equal(result, expected)
 
    def test_getitem_partial(self, multiindex_year_month_day_dataframe_random_data):
        ymd = multiindex_year_month_day_dataframe_random_data
        ymd = ymd.T
        result = ymd[2000, 2]
 
        expected = ymd.reindex(columns=ymd.columns[ymd.columns.codes[1] == 1])
        expected.columns = expected.columns.droplevel(0).droplevel(0)
        tm.assert_frame_equal(result, expected)
 
    def test_fancy_slice_partial(
        self,
        multiindex_dataframe_random_data,
        multiindex_year_month_day_dataframe_random_data,
    ):
        frame = multiindex_dataframe_random_data
        result = frame.loc["bar":"baz"]
        expected = frame[3:7]
        tm.assert_frame_equal(result, expected)
 
        ymd = multiindex_year_month_day_dataframe_random_data
        result = ymd.loc[(2000, 2):(2000, 4)]
        lev = ymd.index.codes[1]
        expected = ymd[(lev >= 1) & (lev <= 3)]
        tm.assert_frame_equal(result, expected)
 
    def test_getitem_partial_column_select(self):
        idx = MultiIndex(
            codes=[[0, 0, 0], [0, 1, 1], [1, 0, 1]],
            levels=[["a", "b"], ["x", "y"], ["p", "q"]],
        )
        df = DataFrame(np.random.rand(3, 2), index=idx)
 
        result = df.loc[("a", "y"), :]
        expected = df.loc[("a", "y")]
        tm.assert_frame_equal(result, expected)
 
        result = df.loc[("a", "y"), [1, 0]]
        expected = df.loc[("a", "y")][[1, 0]]
        tm.assert_frame_equal(result, expected)
 
        with pytest.raises(KeyError, match=r"\('a', 'foo'\)"):
            df.loc[("a", "foo"), :]
 
    # TODO(ArrayManager) rewrite test to not use .values
    # exp.loc[2000, 4].values[:] select multiple columns -> .values is not a view
    @td.skip_array_manager_invalid_test
    def test_partial_set(
        self, multiindex_year_month_day_dataframe_random_data, using_copy_on_write
    ):
        # GH #397
        ymd = multiindex_year_month_day_dataframe_random_data
        df = ymd.copy()
        exp = ymd.copy()
        df.loc[2000, 4] = 0
        exp.iloc[65:85] = 0
        tm.assert_frame_equal(df, exp)
 
        if using_copy_on_write:
            with tm.raises_chained_assignment_error():
                df["A"].loc[2000, 4] = 1
            df.loc[(2000, 4), "A"] = 1
        else:
            df["A"].loc[2000, 4] = 1
        exp.iloc[65:85, 0] = 1
        tm.assert_frame_equal(df, exp)
 
        df.loc[2000] = 5
        exp.iloc[:100] = 5
        tm.assert_frame_equal(df, exp)
 
        # this works...for now
        if using_copy_on_write:
            with tm.raises_chained_assignment_error():
                df["A"].iloc[14] = 5
            df["A"].iloc[14] == exp["A"].iloc[14]
        else:
            df["A"].iloc[14] = 5
            assert df["A"].iloc[14] == 5
 
    @pytest.mark.parametrize("dtype", [int, float])
    def test_getitem_intkey_leading_level(
        self, multiindex_year_month_day_dataframe_random_data, dtype
    ):
        # GH#33355 dont fall-back to positional when leading level is int
        ymd = multiindex_year_month_day_dataframe_random_data
        levels = ymd.index.levels
        ymd.index = ymd.index.set_levels([levels[0].astype(dtype)] + levels[1:])
        ser = ymd["A"]
        mi = ser.index
        assert isinstance(mi, MultiIndex)
        if dtype is int:
            assert mi.levels[0].dtype == np.int_
        else:
            assert mi.levels[0].dtype == np.float64
 
        assert 14 not in mi.levels[0]
        assert not mi.levels[0]._should_fallback_to_positional
        assert not mi._should_fallback_to_positional
 
        with pytest.raises(KeyError, match="14"):
            ser[14]
 
    # ---------------------------------------------------------------------
 
    def test_setitem_multiple_partial(self, multiindex_dataframe_random_data):
        frame = multiindex_dataframe_random_data
        expected = frame.copy()
        result = frame.copy()
        result.loc[["foo", "bar"]] = 0
        expected.loc["foo"] = 0
        expected.loc["bar"] = 0
        tm.assert_frame_equal(result, expected)
 
        expected = frame.copy()
        result = frame.copy()
        result.loc["foo":"bar"] = 0
        expected.loc["foo"] = 0
        expected.loc["bar"] = 0
        tm.assert_frame_equal(result, expected)
 
        expected = frame["A"].copy()
        result = frame["A"].copy()
        result.loc[["foo", "bar"]] = 0
        expected.loc["foo"] = 0
        expected.loc["bar"] = 0
        tm.assert_series_equal(result, expected)
 
        expected = frame["A"].copy()
        result = frame["A"].copy()
        result.loc["foo":"bar"] = 0
        expected.loc["foo"] = 0
        expected.loc["bar"] = 0
        tm.assert_series_equal(result, expected)
 
    @pytest.mark.parametrize(
        "indexer, exp_idx, exp_values",
        [
            (slice("2019-2", None), [to_datetime("2019-02-01")], [2, 3]),
            (
                slice(None, "2019-2"),
                date_range("2019", periods=2, freq="MS"),
                [0, 1, 2, 3],
            ),
        ],
    )
    def test_partial_getitem_loc_datetime(self, indexer, exp_idx, exp_values):
        # GH: 25165
        date_idx = date_range("2019", periods=2, freq="MS")
        df = DataFrame(
            list(range(4)),
            index=MultiIndex.from_product([date_idx, [0, 1]], names=["x", "y"]),
        )
        expected = DataFrame(
            exp_values,
            index=MultiIndex.from_product([exp_idx, [0, 1]], names=["x", "y"]),
        )
        result = df[indexer]
        tm.assert_frame_equal(result, expected)
        result = df.loc[indexer]
        tm.assert_frame_equal(result, expected)
 
        result = df.loc(axis=0)[indexer]
        tm.assert_frame_equal(result, expected)
 
        result = df.loc[indexer, :]
        tm.assert_frame_equal(result, expected)
 
        df2 = df.swaplevel(0, 1).sort_index()
        expected = expected.swaplevel(0, 1).sort_index()
 
        result = df2.loc[:, indexer, :]
        tm.assert_frame_equal(result, expected)
 
 
def test_loc_getitem_partial_both_axis():
    # gh-12660
    iterables = [["a", "b"], [2, 1]]
    columns = MultiIndex.from_product(iterables, names=["col1", "col2"])
    rows = MultiIndex.from_product(iterables, names=["row1", "row2"])
    df = DataFrame(np.random.randn(4, 4), index=rows, columns=columns)
    expected = df.iloc[:2, 2:].droplevel("row1").droplevel("col1", axis=1)
    result = df.loc["a", "b"]
    tm.assert_frame_equal(result, expected)