1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
"""
Tests for the Index constructor conducting inference.
"""
from datetime import (
    datetime,
    timedelta,
)
from decimal import Decimal
 
import numpy as np
import pytest
 
from pandas import (
    NA,
    Categorical,
    CategoricalIndex,
    DatetimeIndex,
    Index,
    IntervalIndex,
    MultiIndex,
    NaT,
    PeriodIndex,
    Series,
    TimedeltaIndex,
    Timestamp,
    array,
    date_range,
    period_range,
    timedelta_range,
)
import pandas._testing as tm
 
 
class TestIndexConstructorInference:
    def test_object_all_bools(self):
        # GH#49594 match Series behavior on ndarray[object] of all bools
        arr = np.array([True, False], dtype=object)
        res = Index(arr)
        assert res.dtype == object
 
        # since the point is matching Series behavior, let's double check
        assert Series(arr).dtype == object
 
    def test_object_all_complex(self):
        # GH#49594 match Series behavior on ndarray[object] of all complex
        arr = np.array([complex(1), complex(2)], dtype=object)
        res = Index(arr)
        assert res.dtype == object
 
        # since the point is matching Series behavior, let's double check
        assert Series(arr).dtype == object
 
    @pytest.mark.parametrize("val", [NaT, None, np.nan, float("nan")])
    def test_infer_nat(self, val):
        # GH#49340 all NaT/None/nan and at least 1 NaT -> datetime64[ns],
        #  matching Series behavior
        values = [NaT, val]
 
        idx = Index(values)
        assert idx.dtype == "datetime64[ns]" and idx.isna().all()
 
        idx = Index(values[::-1])
        assert idx.dtype == "datetime64[ns]" and idx.isna().all()
 
        idx = Index(np.array(values, dtype=object))
        assert idx.dtype == "datetime64[ns]" and idx.isna().all()
 
        idx = Index(np.array(values, dtype=object)[::-1])
        assert idx.dtype == "datetime64[ns]" and idx.isna().all()
 
    @pytest.mark.parametrize("na_value", [None, np.nan])
    @pytest.mark.parametrize("vtype", [list, tuple, iter])
    def test_construction_list_tuples_nan(self, na_value, vtype):
        # GH#18505 : valid tuples containing NaN
        values = [(1, "two"), (3.0, na_value)]
        result = Index(vtype(values))
        expected = MultiIndex.from_tuples(values)
        tm.assert_index_equal(result, expected)
 
    @pytest.mark.parametrize(
        "dtype",
        [int, "int64", "int32", "int16", "int8", "uint64", "uint32", "uint16", "uint8"],
    )
    def test_constructor_int_dtype_float(self, dtype):
        # GH#18400
        expected = Index([0, 1, 2, 3], dtype=dtype)
        result = Index([0.0, 1.0, 2.0, 3.0], dtype=dtype)
        tm.assert_index_equal(result, expected)
 
    @pytest.mark.parametrize("cast_index", [True, False])
    @pytest.mark.parametrize(
        "vals", [[True, False, True], np.array([True, False, True], dtype=bool)]
    )
    def test_constructor_dtypes_to_object(self, cast_index, vals):
        if cast_index:
            index = Index(vals, dtype=bool)
        else:
            index = Index(vals)
 
        assert type(index) is Index
        assert index.dtype == bool
 
    def test_constructor_categorical_to_object(self):
        # GH#32167 Categorical data and dtype=object should return object-dtype
        ci = CategoricalIndex(range(5))
        result = Index(ci, dtype=object)
        assert not isinstance(result, CategoricalIndex)
 
    def test_constructor_infer_periodindex(self):
        xp = period_range("2012-1-1", freq="M", periods=3)
        rs = Index(xp)
        tm.assert_index_equal(rs, xp)
        assert isinstance(rs, PeriodIndex)
 
    def test_from_list_of_periods(self):
        rng = period_range("1/1/2000", periods=20, freq="D")
        periods = list(rng)
 
        result = Index(periods)
        assert isinstance(result, PeriodIndex)
 
    @pytest.mark.parametrize("pos", [0, 1])
    @pytest.mark.parametrize(
        "klass,dtype,ctor",
        [
            (DatetimeIndex, "datetime64[ns]", np.datetime64("nat")),
            (TimedeltaIndex, "timedelta64[ns]", np.timedelta64("nat")),
        ],
    )
    def test_constructor_infer_nat_dt_like(
        self, pos, klass, dtype, ctor, nulls_fixture, request
    ):
        if isinstance(nulls_fixture, Decimal):
            # We dont cast these to datetime64/timedelta64
            return
 
        expected = klass([NaT, NaT])
        assert expected.dtype == dtype
        data = [ctor]
        data.insert(pos, nulls_fixture)
 
        warn = None
        if nulls_fixture is NA:
            expected = Index([NA, NaT])
            mark = pytest.mark.xfail(reason="Broken with np.NaT ctor; see GH 31884")
            request.node.add_marker(mark)
            # GH#35942 numpy will emit a DeprecationWarning within the
            #  assert_index_equal calls.  Since we can't do anything
            #  about it until GH#31884 is fixed, we suppress that warning.
            warn = DeprecationWarning
 
        result = Index(data)
 
        with tm.assert_produces_warning(warn):
            tm.assert_index_equal(result, expected)
 
        result = Index(np.array(data, dtype=object))
 
        with tm.assert_produces_warning(warn):
            tm.assert_index_equal(result, expected)
 
    @pytest.mark.parametrize("swap_objs", [True, False])
    def test_constructor_mixed_nat_objs_infers_object(self, swap_objs):
        # mixed np.datetime64/timedelta64 nat results in object
        data = [np.datetime64("nat"), np.timedelta64("nat")]
        if swap_objs:
            data = data[::-1]
 
        expected = Index(data, dtype=object)
        tm.assert_index_equal(Index(data), expected)
        tm.assert_index_equal(Index(np.array(data, dtype=object)), expected)
 
    @pytest.mark.parametrize("swap_objs", [True, False])
    def test_constructor_datetime_and_datetime64(self, swap_objs):
        data = [Timestamp(2021, 6, 8, 9, 42), np.datetime64("now")]
        if swap_objs:
            data = data[::-1]
        expected = DatetimeIndex(data)
 
        tm.assert_index_equal(Index(data), expected)
        tm.assert_index_equal(Index(np.array(data, dtype=object)), expected)
 
 
class TestDtypeEnforced:
    # check we don't silently ignore the dtype keyword
 
    def test_constructor_object_dtype_with_ea_data(self, any_numeric_ea_dtype):
        # GH#45206
        arr = array([0], dtype=any_numeric_ea_dtype)
 
        idx = Index(arr, dtype=object)
        assert idx.dtype == object
 
    @pytest.mark.parametrize("dtype", [object, "float64", "uint64", "category"])
    def test_constructor_range_values_mismatched_dtype(self, dtype):
        rng = Index(range(5))
 
        result = Index(rng, dtype=dtype)
        assert result.dtype == dtype
 
        result = Index(range(5), dtype=dtype)
        assert result.dtype == dtype
 
    @pytest.mark.parametrize("dtype", [object, "float64", "uint64", "category"])
    def test_constructor_categorical_values_mismatched_non_ea_dtype(self, dtype):
        cat = Categorical([1, 2, 3])
 
        result = Index(cat, dtype=dtype)
        assert result.dtype == dtype
 
    def test_constructor_categorical_values_mismatched_dtype(self):
        dti = date_range("2016-01-01", periods=3)
        cat = Categorical(dti)
        result = Index(cat, dti.dtype)
        tm.assert_index_equal(result, dti)
 
        dti2 = dti.tz_localize("Asia/Tokyo")
        cat2 = Categorical(dti2)
        result = Index(cat2, dti2.dtype)
        tm.assert_index_equal(result, dti2)
 
        ii = IntervalIndex.from_breaks(range(5))
        cat3 = Categorical(ii)
        result = Index(cat3, dtype=ii.dtype)
        tm.assert_index_equal(result, ii)
 
    def test_constructor_ea_values_mismatched_categorical_dtype(self):
        dti = date_range("2016-01-01", periods=3)
        result = Index(dti, dtype="category")
        expected = CategoricalIndex(dti)
        tm.assert_index_equal(result, expected)
 
        dti2 = date_range("2016-01-01", periods=3, tz="US/Pacific")
        result = Index(dti2, dtype="category")
        expected = CategoricalIndex(dti2)
        tm.assert_index_equal(result, expected)
 
    def test_constructor_period_values_mismatched_dtype(self):
        pi = period_range("2016-01-01", periods=3, freq="D")
        result = Index(pi, dtype="category")
        expected = CategoricalIndex(pi)
        tm.assert_index_equal(result, expected)
 
    def test_constructor_timedelta64_values_mismatched_dtype(self):
        # check we don't silently ignore the dtype keyword
        tdi = timedelta_range("4 Days", periods=5)
        result = Index(tdi, dtype="category")
        expected = CategoricalIndex(tdi)
        tm.assert_index_equal(result, expected)
 
    def test_constructor_interval_values_mismatched_dtype(self):
        dti = date_range("2016-01-01", periods=3)
        ii = IntervalIndex.from_breaks(dti)
        result = Index(ii, dtype="category")
        expected = CategoricalIndex(ii)
        tm.assert_index_equal(result, expected)
 
    def test_constructor_datetime64_values_mismatched_period_dtype(self):
        dti = date_range("2016-01-01", periods=3)
        result = Index(dti, dtype="Period[D]")
        expected = dti.to_period("D")
        tm.assert_index_equal(result, expected)
 
    @pytest.mark.parametrize("dtype", ["int64", "uint64"])
    def test_constructor_int_dtype_nan_raises(self, dtype):
        # see GH#15187
        data = [np.nan]
        msg = "cannot convert"
        with pytest.raises(ValueError, match=msg):
            Index(data, dtype=dtype)
 
    @pytest.mark.parametrize(
        "vals",
        [
            [1, 2, 3],
            np.array([1, 2, 3]),
            np.array([1, 2, 3], dtype=int),
            # below should coerce
            [1.0, 2.0, 3.0],
            np.array([1.0, 2.0, 3.0], dtype=float),
        ],
    )
    def test_constructor_dtypes_to_int(self, vals, any_int_numpy_dtype):
        dtype = any_int_numpy_dtype
        index = Index(vals, dtype=dtype)
        assert index.dtype == dtype
 
    @pytest.mark.parametrize(
        "vals",
        [
            [1, 2, 3],
            [1.0, 2.0, 3.0],
            np.array([1.0, 2.0, 3.0]),
            np.array([1, 2, 3], dtype=int),
            np.array([1.0, 2.0, 3.0], dtype=float),
        ],
    )
    def test_constructor_dtypes_to_float(self, vals, float_numpy_dtype):
        dtype = float_numpy_dtype
        index = Index(vals, dtype=dtype)
        assert index.dtype == dtype
 
    @pytest.mark.parametrize(
        "vals",
        [
            [1, 2, 3],
            np.array([1, 2, 3], dtype=int),
            np.array(["2011-01-01", "2011-01-02"], dtype="datetime64[ns]"),
            [datetime(2011, 1, 1), datetime(2011, 1, 2)],
        ],
    )
    def test_constructor_dtypes_to_categorical(self, vals):
        index = Index(vals, dtype="category")
        assert isinstance(index, CategoricalIndex)
 
    @pytest.mark.parametrize("cast_index", [True, False])
    @pytest.mark.parametrize(
        "vals",
        [
            Index(np.array([np.datetime64("2011-01-01"), np.datetime64("2011-01-02")])),
            Index([datetime(2011, 1, 1), datetime(2011, 1, 2)]),
        ],
    )
    def test_constructor_dtypes_to_datetime(self, cast_index, vals):
        if cast_index:
            index = Index(vals, dtype=object)
            assert isinstance(index, Index)
            assert index.dtype == object
        else:
            index = Index(vals)
            assert isinstance(index, DatetimeIndex)
 
    @pytest.mark.parametrize("cast_index", [True, False])
    @pytest.mark.parametrize(
        "vals",
        [
            np.array([np.timedelta64(1, "D"), np.timedelta64(1, "D")]),
            [timedelta(1), timedelta(1)],
        ],
    )
    def test_constructor_dtypes_to_timedelta(self, cast_index, vals):
        if cast_index:
            index = Index(vals, dtype=object)
            assert isinstance(index, Index)
            assert index.dtype == object
        else:
            index = Index(vals)
            assert isinstance(index, TimedeltaIndex)
 
 
class TestIndexConstructorUnwrapping:
    # Test passing different arraylike values to pd.Index
 
    @pytest.mark.parametrize("klass", [Index, DatetimeIndex])
    def test_constructor_from_series_dt64(self, klass):
        stamps = [Timestamp("20110101"), Timestamp("20120101"), Timestamp("20130101")]
        expected = DatetimeIndex(stamps)
        ser = Series(stamps)
        result = klass(ser)
        tm.assert_index_equal(result, expected)
 
    def test_constructor_no_pandas_array(self):
        ser = Series([1, 2, 3])
        result = Index(ser.array)
        expected = Index([1, 2, 3])
        tm.assert_index_equal(result, expected)
 
    @pytest.mark.parametrize(
        "array",
        [
            np.arange(5),
            np.array(["a", "b", "c"]),
            date_range("2000-01-01", periods=3).values,
        ],
    )
    def test_constructor_ndarray_like(self, array):
        # GH#5460#issuecomment-44474502
        # it should be possible to convert any object that satisfies the numpy
        # ndarray interface directly into an Index
        class ArrayLike:
            def __init__(self, array) -> None:
                self.array = array
 
            def __array__(self, dtype=None) -> np.ndarray:
                return self.array
 
        expected = Index(array)
        result = Index(ArrayLike(array))
        tm.assert_index_equal(result, expected)
 
 
class TestIndexConstructionErrors:
    def test_constructor_overflow_int64(self):
        # see GH#15832
        msg = (
            "The elements provided in the data cannot "
            "all be casted to the dtype int64"
        )
        with pytest.raises(OverflowError, match=msg):
            Index([np.iinfo(np.uint64).max - 1], dtype="int64")