1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
| from itertools import product
|
| import numpy as np
| import pytest
|
| from pandas._libs import hashtable
|
| from pandas import (
| NA,
| DatetimeIndex,
| MultiIndex,
| Series,
| )
| import pandas._testing as tm
|
|
| @pytest.mark.parametrize("names", [None, ["first", "second"]])
| def test_unique(names):
| mi = MultiIndex.from_arrays([[1, 2, 1, 2], [1, 1, 1, 2]], names=names)
|
| res = mi.unique()
| exp = MultiIndex.from_arrays([[1, 2, 2], [1, 1, 2]], names=mi.names)
| tm.assert_index_equal(res, exp)
|
| mi = MultiIndex.from_arrays([list("aaaa"), list("abab")], names=names)
| res = mi.unique()
| exp = MultiIndex.from_arrays([list("aa"), list("ab")], names=mi.names)
| tm.assert_index_equal(res, exp)
|
| mi = MultiIndex.from_arrays([list("aaaa"), list("aaaa")], names=names)
| res = mi.unique()
| exp = MultiIndex.from_arrays([["a"], ["a"]], names=mi.names)
| tm.assert_index_equal(res, exp)
|
| # GH #20568 - empty MI
| mi = MultiIndex.from_arrays([[], []], names=names)
| res = mi.unique()
| tm.assert_index_equal(mi, res)
|
|
| def test_unique_datetimelike():
| idx1 = DatetimeIndex(
| ["2015-01-01", "2015-01-01", "2015-01-01", "2015-01-01", "NaT", "NaT"]
| )
| idx2 = DatetimeIndex(
| ["2015-01-01", "2015-01-01", "2015-01-02", "2015-01-02", "NaT", "2015-01-01"],
| tz="Asia/Tokyo",
| )
| result = MultiIndex.from_arrays([idx1, idx2]).unique()
|
| eidx1 = DatetimeIndex(["2015-01-01", "2015-01-01", "NaT", "NaT"])
| eidx2 = DatetimeIndex(
| ["2015-01-01", "2015-01-02", "NaT", "2015-01-01"], tz="Asia/Tokyo"
| )
| exp = MultiIndex.from_arrays([eidx1, eidx2])
| tm.assert_index_equal(result, exp)
|
|
| @pytest.mark.parametrize("level", [0, "first", 1, "second"])
| def test_unique_level(idx, level):
| # GH #17896 - with level= argument
| result = idx.unique(level=level)
| expected = idx.get_level_values(level).unique()
| tm.assert_index_equal(result, expected)
|
| # With already unique level
| mi = MultiIndex.from_arrays([[1, 3, 2, 4], [1, 3, 2, 5]], names=["first", "second"])
| result = mi.unique(level=level)
| expected = mi.get_level_values(level)
| tm.assert_index_equal(result, expected)
|
| # With empty MI
| mi = MultiIndex.from_arrays([[], []], names=["first", "second"])
| result = mi.unique(level=level)
| expected = mi.get_level_values(level)
| tm.assert_index_equal(result, expected)
|
|
| def test_duplicate_multiindex_codes():
| # GH 17464
| # Make sure that a MultiIndex with duplicate levels throws a ValueError
| msg = r"Level values must be unique: \[[A', ]+\] on level 0"
| with pytest.raises(ValueError, match=msg):
| mi = MultiIndex([["A"] * 10, range(10)], [[0] * 10, range(10)])
|
| # And that using set_levels with duplicate levels fails
| mi = MultiIndex.from_arrays([["A", "A", "B", "B", "B"], [1, 2, 1, 2, 3]])
| msg = r"Level values must be unique: \[[AB', ]+\] on level 0"
| with pytest.raises(ValueError, match=msg):
| mi.set_levels([["A", "B", "A", "A", "B"], [2, 1, 3, -2, 5]])
|
|
| @pytest.mark.parametrize("names", [["a", "b", "a"], [1, 1, 2], [1, "a", 1]])
| def test_duplicate_level_names(names):
| # GH18872, GH19029
| mi = MultiIndex.from_product([[0, 1]] * 3, names=names)
| assert mi.names == names
|
| # With .rename()
| mi = MultiIndex.from_product([[0, 1]] * 3)
| mi = mi.rename(names)
| assert mi.names == names
|
| # With .rename(., level=)
| mi.rename(names[1], level=1, inplace=True)
| mi = mi.rename([names[0], names[2]], level=[0, 2])
| assert mi.names == names
|
|
| def test_duplicate_meta_data():
| # GH 10115
| mi = MultiIndex(
| levels=[[0, 1], [0, 1, 2]], codes=[[0, 0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 0, 1, 2]]
| )
|
| for idx in [
| mi,
| mi.set_names([None, None]),
| mi.set_names([None, "Num"]),
| mi.set_names(["Upper", "Num"]),
| ]:
| assert idx.has_duplicates
| assert idx.drop_duplicates().names == idx.names
|
|
| def test_has_duplicates(idx, idx_dup):
| # see fixtures
| assert idx.is_unique is True
| assert idx.has_duplicates is False
| assert idx_dup.is_unique is False
| assert idx_dup.has_duplicates is True
|
| mi = MultiIndex(
| levels=[[0, 1], [0, 1, 2]], codes=[[0, 0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 0, 1, 2]]
| )
| assert mi.is_unique is False
| assert mi.has_duplicates is True
|
| # single instance of NaN
| mi_nan = MultiIndex(
| levels=[["a", "b"], [0, 1]], codes=[[-1, 0, 0, 1, 1], [-1, 0, 1, 0, 1]]
| )
| assert mi_nan.is_unique is True
| assert mi_nan.has_duplicates is False
|
| # multiple instances of NaN
| mi_nan_dup = MultiIndex(
| levels=[["a", "b"], [0, 1]], codes=[[-1, -1, 0, 0, 1, 1], [-1, -1, 0, 1, 0, 1]]
| )
| assert mi_nan_dup.is_unique is False
| assert mi_nan_dup.has_duplicates is True
|
|
| def test_has_duplicates_from_tuples():
| # GH 9075
| t = [
| ("x", "out", "z", 5, "y", "in", "z", 169),
| ("x", "out", "z", 7, "y", "in", "z", 119),
| ("x", "out", "z", 9, "y", "in", "z", 135),
| ("x", "out", "z", 13, "y", "in", "z", 145),
| ("x", "out", "z", 14, "y", "in", "z", 158),
| ("x", "out", "z", 16, "y", "in", "z", 122),
| ("x", "out", "z", 17, "y", "in", "z", 160),
| ("x", "out", "z", 18, "y", "in", "z", 180),
| ("x", "out", "z", 20, "y", "in", "z", 143),
| ("x", "out", "z", 21, "y", "in", "z", 128),
| ("x", "out", "z", 22, "y", "in", "z", 129),
| ("x", "out", "z", 25, "y", "in", "z", 111),
| ("x", "out", "z", 28, "y", "in", "z", 114),
| ("x", "out", "z", 29, "y", "in", "z", 121),
| ("x", "out", "z", 31, "y", "in", "z", 126),
| ("x", "out", "z", 32, "y", "in", "z", 155),
| ("x", "out", "z", 33, "y", "in", "z", 123),
| ("x", "out", "z", 12, "y", "in", "z", 144),
| ]
|
| mi = MultiIndex.from_tuples(t)
| assert not mi.has_duplicates
|
|
| @pytest.mark.parametrize("nlevels", [4, 8])
| @pytest.mark.parametrize("with_nulls", [True, False])
| def test_has_duplicates_overflow(nlevels, with_nulls):
| # handle int64 overflow if possible
| # no overflow with 4
| # overflow possible with 8
| codes = np.tile(np.arange(500), 2)
| level = np.arange(500)
|
| if with_nulls: # inject some null values
| codes[500] = -1 # common nan value
| codes = [codes.copy() for i in range(nlevels)]
| for i in range(nlevels):
| codes[i][500 + i - nlevels // 2] = -1
|
| codes += [np.array([-1, 1]).repeat(500)]
| else:
| codes = [codes] * nlevels + [np.arange(2).repeat(500)]
|
| levels = [level] * nlevels + [[0, 1]]
|
| # no dups
| mi = MultiIndex(levels=levels, codes=codes)
| assert not mi.has_duplicates
|
| # with a dup
| if with_nulls:
|
| def f(a):
| return np.insert(a, 1000, a[0])
|
| codes = list(map(f, codes))
| mi = MultiIndex(levels=levels, codes=codes)
| else:
| values = mi.values.tolist()
| mi = MultiIndex.from_tuples(values + [values[0]])
|
| assert mi.has_duplicates
|
|
| @pytest.mark.parametrize(
| "keep, expected",
| [
| ("first", np.array([False, False, False, True, True, False])),
| ("last", np.array([False, True, True, False, False, False])),
| (False, np.array([False, True, True, True, True, False])),
| ],
| )
| def test_duplicated(idx_dup, keep, expected):
| result = idx_dup.duplicated(keep=keep)
| tm.assert_numpy_array_equal(result, expected)
|
|
| @pytest.mark.arm_slow
| def test_duplicated_large(keep):
| # GH 9125
| n, k = 200, 5000
| levels = [np.arange(n), tm.makeStringIndex(n), 1000 + np.arange(n)]
| codes = [np.random.choice(n, k * n) for lev in levels]
| mi = MultiIndex(levels=levels, codes=codes)
|
| result = mi.duplicated(keep=keep)
| expected = hashtable.duplicated(mi.values, keep=keep)
| tm.assert_numpy_array_equal(result, expected)
|
|
| def test_duplicated2():
| # TODO: more informative test name
| # GH5873
| for a in [101, 102]:
| mi = MultiIndex.from_arrays([[101, a], [3.5, np.nan]])
| assert not mi.has_duplicates
|
| tm.assert_numpy_array_equal(mi.duplicated(), np.zeros(2, dtype="bool"))
|
| for n in range(1, 6): # 1st level shape
| for m in range(1, 5): # 2nd level shape
| # all possible unique combinations, including nan
| codes = product(range(-1, n), range(-1, m))
| mi = MultiIndex(
| levels=[list("abcde")[:n], list("WXYZ")[:m]],
| codes=np.random.permutation(list(codes)).T,
| )
| assert len(mi) == (n + 1) * (m + 1)
| assert not mi.has_duplicates
|
| tm.assert_numpy_array_equal(
| mi.duplicated(), np.zeros(len(mi), dtype="bool")
| )
|
|
| def test_duplicated_drop_duplicates():
| # GH#4060
| idx = MultiIndex.from_arrays(([1, 2, 3, 1, 2, 3], [1, 1, 1, 1, 2, 2]))
|
| expected = np.array([False, False, False, True, False, False], dtype=bool)
| duplicated = idx.duplicated()
| tm.assert_numpy_array_equal(duplicated, expected)
| assert duplicated.dtype == bool
| expected = MultiIndex.from_arrays(([1, 2, 3, 2, 3], [1, 1, 1, 2, 2]))
| tm.assert_index_equal(idx.drop_duplicates(), expected)
|
| expected = np.array([True, False, False, False, False, False])
| duplicated = idx.duplicated(keep="last")
| tm.assert_numpy_array_equal(duplicated, expected)
| assert duplicated.dtype == bool
| expected = MultiIndex.from_arrays(([2, 3, 1, 2, 3], [1, 1, 1, 2, 2]))
| tm.assert_index_equal(idx.drop_duplicates(keep="last"), expected)
|
| expected = np.array([True, False, False, True, False, False])
| duplicated = idx.duplicated(keep=False)
| tm.assert_numpy_array_equal(duplicated, expected)
| assert duplicated.dtype == bool
| expected = MultiIndex.from_arrays(([2, 3, 2, 3], [1, 1, 2, 2]))
| tm.assert_index_equal(idx.drop_duplicates(keep=False), expected)
|
|
| @pytest.mark.parametrize(
| "dtype",
| [
| np.complex64,
| np.complex128,
| ],
| )
| def test_duplicated_series_complex_numbers(dtype):
| # GH 17927
| expected = Series(
| [False, False, False, True, False, False, False, True, False, True],
| dtype=bool,
| )
| result = Series(
| [
| np.nan + np.nan * 1j,
| 0,
| 1j,
| 1j,
| 1,
| 1 + 1j,
| 1 + 2j,
| 1 + 1j,
| np.nan,
| np.nan + np.nan * 1j,
| ],
| dtype=dtype,
| ).duplicated()
| tm.assert_series_equal(result, expected)
|
|
| def test_midx_unique_ea_dtype():
| # GH#48335
| vals_a = Series([1, 2, NA, NA], dtype="Int64")
| vals_b = np.array([1, 2, 3, 3])
| midx = MultiIndex.from_arrays([vals_a, vals_b], names=["a", "b"])
| result = midx.unique()
|
| exp_vals_a = Series([1, 2, NA], dtype="Int64")
| exp_vals_b = np.array([1, 2, 3])
| expected = MultiIndex.from_arrays([exp_vals_a, exp_vals_b], names=["a", "b"])
| tm.assert_index_equal(result, expected)
|
|