1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import numpy as np
import pytest
 
import pandas as pd
from pandas import (
    Index,
    MultiIndex,
    date_range,
    period_range,
)
import pandas._testing as tm
 
 
def test_infer_objects(idx):
    with pytest.raises(NotImplementedError, match="to_frame"):
        idx.infer_objects()
 
 
def test_shift(idx):
    # GH8083 test the base class for shift
    msg = (
        "This method is only implemented for DatetimeIndex, PeriodIndex and "
        "TimedeltaIndex; Got type MultiIndex"
    )
    with pytest.raises(NotImplementedError, match=msg):
        idx.shift(1)
    with pytest.raises(NotImplementedError, match=msg):
        idx.shift(1, 2)
 
 
def test_groupby(idx):
    groups = idx.groupby(np.array([1, 1, 1, 2, 2, 2]))
    labels = idx.tolist()
    exp = {1: labels[:3], 2: labels[3:]}
    tm.assert_dict_equal(groups, exp)
 
    # GH5620
    groups = idx.groupby(idx)
    exp = {key: [key] for key in idx}
    tm.assert_dict_equal(groups, exp)
 
 
def test_truncate_multiindex():
    # GH 34564 for MultiIndex level names check
    major_axis = Index(list(range(4)))
    minor_axis = Index(list(range(2)))
 
    major_codes = np.array([0, 0, 1, 2, 3, 3])
    minor_codes = np.array([0, 1, 0, 1, 0, 1])
 
    index = MultiIndex(
        levels=[major_axis, minor_axis],
        codes=[major_codes, minor_codes],
        names=["L1", "L2"],
    )
 
    result = index.truncate(before=1)
    assert "foo" not in result.levels[0]
    assert 1 in result.levels[0]
    assert index.names == result.names
 
    result = index.truncate(after=1)
    assert 2 not in result.levels[0]
    assert 1 in result.levels[0]
    assert index.names == result.names
 
    result = index.truncate(before=1, after=2)
    assert len(result.levels[0]) == 2
    assert index.names == result.names
 
    msg = "after < before"
    with pytest.raises(ValueError, match=msg):
        index.truncate(3, 1)
 
 
# TODO: reshape
 
 
def test_reorder_levels(idx):
    # this blows up
    with pytest.raises(IndexError, match="^Too many levels"):
        idx.reorder_levels([2, 1, 0])
 
 
def test_numpy_repeat():
    reps = 2
    numbers = [1, 2, 3]
    names = np.array(["foo", "bar"])
 
    m = MultiIndex.from_product([numbers, names], names=names)
    expected = MultiIndex.from_product([numbers, names.repeat(reps)], names=names)
    tm.assert_index_equal(np.repeat(m, reps), expected)
 
    msg = "the 'axis' parameter is not supported"
    with pytest.raises(ValueError, match=msg):
        np.repeat(m, reps, axis=1)
 
 
def test_append_mixed_dtypes():
    # GH 13660
    dti = date_range("2011-01-01", freq="M", periods=3)
    dti_tz = date_range("2011-01-01", freq="M", periods=3, tz="US/Eastern")
    pi = period_range("2011-01", freq="M", periods=3)
 
    mi = MultiIndex.from_arrays(
        [[1, 2, 3], [1.1, np.nan, 3.3], ["a", "b", "c"], dti, dti_tz, pi]
    )
    assert mi.nlevels == 6
 
    res = mi.append(mi)
    exp = MultiIndex.from_arrays(
        [
            [1, 2, 3, 1, 2, 3],
            [1.1, np.nan, 3.3, 1.1, np.nan, 3.3],
            ["a", "b", "c", "a", "b", "c"],
            dti.append(dti),
            dti_tz.append(dti_tz),
            pi.append(pi),
        ]
    )
    tm.assert_index_equal(res, exp)
 
    other = MultiIndex.from_arrays(
        [
            ["x", "y", "z"],
            ["x", "y", "z"],
            ["x", "y", "z"],
            ["x", "y", "z"],
            ["x", "y", "z"],
            ["x", "y", "z"],
        ]
    )
 
    res = mi.append(other)
    exp = MultiIndex.from_arrays(
        [
            [1, 2, 3, "x", "y", "z"],
            [1.1, np.nan, 3.3, "x", "y", "z"],
            ["a", "b", "c", "x", "y", "z"],
            dti.append(Index(["x", "y", "z"])),
            dti_tz.append(Index(["x", "y", "z"])),
            pi.append(Index(["x", "y", "z"])),
        ]
    )
    tm.assert_index_equal(res, exp)
 
 
def test_iter(idx):
    result = list(idx)
    expected = [
        ("foo", "one"),
        ("foo", "two"),
        ("bar", "one"),
        ("baz", "two"),
        ("qux", "one"),
        ("qux", "two"),
    ]
    assert result == expected
 
 
def test_sub(idx):
    first = idx
 
    # - now raises (previously was set op difference)
    msg = "cannot perform __sub__ with this index type: MultiIndex"
    with pytest.raises(TypeError, match=msg):
        first - idx[-3:]
    with pytest.raises(TypeError, match=msg):
        idx[-3:] - first
    with pytest.raises(TypeError, match=msg):
        idx[-3:] - first.tolist()
    msg = "cannot perform __rsub__ with this index type: MultiIndex"
    with pytest.raises(TypeError, match=msg):
        first.tolist() - idx[-3:]
 
 
def test_map(idx):
    # callable
    index = idx
 
    result = index.map(lambda x: x)
    tm.assert_index_equal(result, index)
 
 
@pytest.mark.parametrize(
    "mapper",
    [
        lambda values, idx: {i: e for e, i in zip(values, idx)},
        lambda values, idx: pd.Series(values, idx),
    ],
)
def test_map_dictlike(idx, mapper):
    identity = mapper(idx.values, idx)
 
    # we don't infer to uint64 dtype for a dict
    if idx.dtype == np.uint64 and isinstance(identity, dict):
        expected = idx.astype("int64")
    else:
        expected = idx
 
    result = idx.map(identity)
    tm.assert_index_equal(result, expected)
 
    # empty mappable
    expected = Index([np.nan] * len(idx))
    result = idx.map(mapper(expected, idx))
    tm.assert_index_equal(result, expected)
 
 
@pytest.mark.parametrize(
    "func",
    [
        np.exp,
        np.exp2,
        np.expm1,
        np.log,
        np.log2,
        np.log10,
        np.log1p,
        np.sqrt,
        np.sin,
        np.cos,
        np.tan,
        np.arcsin,
        np.arccos,
        np.arctan,
        np.sinh,
        np.cosh,
        np.tanh,
        np.arcsinh,
        np.arccosh,
        np.arctanh,
        np.deg2rad,
        np.rad2deg,
    ],
    ids=lambda func: func.__name__,
)
def test_numpy_ufuncs(idx, func):
    # test ufuncs of numpy. see:
    # https://numpy.org/doc/stable/reference/ufuncs.html
 
    expected_exception = TypeError
    msg = (
        "loop of ufunc does not support argument 0 of type tuple which "
        f"has no callable {func.__name__} method"
    )
    with pytest.raises(expected_exception, match=msg):
        func(idx)
 
 
@pytest.mark.parametrize(
    "func",
    [np.isfinite, np.isinf, np.isnan, np.signbit],
    ids=lambda func: func.__name__,
)
def test_numpy_type_funcs(idx, func):
    msg = (
        f"ufunc '{func.__name__}' not supported for the input types, and the inputs "
        "could not be safely coerced to any supported types according to "
        "the casting rule ''safe''"
    )
    with pytest.raises(TypeError, match=msg):
        func(idx)