1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
from itertools import permutations
 
import numpy as np
import pytest
 
from pandas._libs.interval import IntervalTree
from pandas.compat import IS64
 
import pandas._testing as tm
 
 
def skipif_32bit(param):
    """
    Skip parameters in a parametrize on 32bit systems. Specifically used
    here to skip leaf_size parameters related to GH 23440.
    """
    marks = pytest.mark.skipif(not IS64, reason="GH 23440: int type mismatch on 32bit")
    return pytest.param(param, marks=marks)
 
 
@pytest.fixture(params=["int64", "float64", "uint64"])
def dtype(request):
    return request.param
 
 
@pytest.fixture(params=[skipif_32bit(1), skipif_32bit(2), 10])
def leaf_size(request):
    """
    Fixture to specify IntervalTree leaf_size parameter; to be used with the
    tree fixture.
    """
    return request.param
 
 
@pytest.fixture(
    params=[
        np.arange(5, dtype="int64"),
        np.arange(5, dtype="uint64"),
        np.arange(5, dtype="float64"),
        np.array([0, 1, 2, 3, 4, np.nan], dtype="float64"),
    ]
)
def tree(request, leaf_size):
    left = request.param
    return IntervalTree(left, left + 2, leaf_size=leaf_size)
 
 
class TestIntervalTree:
    def test_get_indexer(self, tree):
        result = tree.get_indexer(np.array([1.0, 5.5, 6.5]))
        expected = np.array([0, 4, -1], dtype="intp")
        tm.assert_numpy_array_equal(result, expected)
 
        with pytest.raises(
            KeyError, match="'indexer does not intersect a unique set of intervals'"
        ):
            tree.get_indexer(np.array([3.0]))
 
    @pytest.mark.parametrize(
        "dtype, target_value, target_dtype",
        [("int64", 2**63 + 1, "uint64"), ("uint64", -1, "int64")],
    )
    def test_get_indexer_overflow(self, dtype, target_value, target_dtype):
        left, right = np.array([0, 1], dtype=dtype), np.array([1, 2], dtype=dtype)
        tree = IntervalTree(left, right)
 
        result = tree.get_indexer(np.array([target_value], dtype=target_dtype))
        expected = np.array([-1], dtype="intp")
        tm.assert_numpy_array_equal(result, expected)
 
    def test_get_indexer_non_unique(self, tree):
        indexer, missing = tree.get_indexer_non_unique(np.array([1.0, 2.0, 6.5]))
 
        result = indexer[:1]
        expected = np.array([0], dtype="intp")
        tm.assert_numpy_array_equal(result, expected)
 
        result = np.sort(indexer[1:3])
        expected = np.array([0, 1], dtype="intp")
        tm.assert_numpy_array_equal(result, expected)
 
        result = np.sort(indexer[3:])
        expected = np.array([-1], dtype="intp")
        tm.assert_numpy_array_equal(result, expected)
 
        result = missing
        expected = np.array([2], dtype="intp")
        tm.assert_numpy_array_equal(result, expected)
 
    @pytest.mark.parametrize(
        "dtype, target_value, target_dtype",
        [("int64", 2**63 + 1, "uint64"), ("uint64", -1, "int64")],
    )
    def test_get_indexer_non_unique_overflow(self, dtype, target_value, target_dtype):
        left, right = np.array([0, 2], dtype=dtype), np.array([1, 3], dtype=dtype)
        tree = IntervalTree(left, right)
        target = np.array([target_value], dtype=target_dtype)
 
        result_indexer, result_missing = tree.get_indexer_non_unique(target)
        expected_indexer = np.array([-1], dtype="intp")
        tm.assert_numpy_array_equal(result_indexer, expected_indexer)
 
        expected_missing = np.array([0], dtype="intp")
        tm.assert_numpy_array_equal(result_missing, expected_missing)
 
    def test_duplicates(self, dtype):
        left = np.array([0, 0, 0], dtype=dtype)
        tree = IntervalTree(left, left + 1)
 
        with pytest.raises(
            KeyError, match="'indexer does not intersect a unique set of intervals'"
        ):
            tree.get_indexer(np.array([0.5]))
 
        indexer, missing = tree.get_indexer_non_unique(np.array([0.5]))
        result = np.sort(indexer)
        expected = np.array([0, 1, 2], dtype="intp")
        tm.assert_numpy_array_equal(result, expected)
 
        result = missing
        expected = np.array([], dtype="intp")
        tm.assert_numpy_array_equal(result, expected)
 
    @pytest.mark.parametrize(
        "leaf_size", [skipif_32bit(1), skipif_32bit(10), skipif_32bit(100), 10000]
    )
    def test_get_indexer_closed(self, closed, leaf_size):
        x = np.arange(1000, dtype="float64")
        found = x.astype("intp")
        not_found = (-1 * np.ones(1000)).astype("intp")
 
        tree = IntervalTree(x, x + 0.5, closed=closed, leaf_size=leaf_size)
        tm.assert_numpy_array_equal(found, tree.get_indexer(x + 0.25))
 
        expected = found if tree.closed_left else not_found
        tm.assert_numpy_array_equal(expected, tree.get_indexer(x + 0.0))
 
        expected = found if tree.closed_right else not_found
        tm.assert_numpy_array_equal(expected, tree.get_indexer(x + 0.5))
 
    @pytest.mark.parametrize(
        "left, right, expected",
        [
            (np.array([0, 1, 4], dtype="int64"), np.array([2, 3, 5]), True),
            (np.array([0, 1, 2], dtype="int64"), np.array([5, 4, 3]), True),
            (np.array([0, 1, np.nan]), np.array([5, 4, np.nan]), True),
            (np.array([0, 2, 4], dtype="int64"), np.array([1, 3, 5]), False),
            (np.array([0, 2, np.nan]), np.array([1, 3, np.nan]), False),
        ],
    )
    @pytest.mark.parametrize("order", (list(x) for x in permutations(range(3))))
    def test_is_overlapping(self, closed, order, left, right, expected):
        # GH 23309
        tree = IntervalTree(left[order], right[order], closed=closed)
        result = tree.is_overlapping
        assert result is expected
 
    @pytest.mark.parametrize("order", (list(x) for x in permutations(range(3))))
    def test_is_overlapping_endpoints(self, closed, order):
        """shared endpoints are marked as overlapping"""
        # GH 23309
        left, right = np.arange(3, dtype="int64"), np.arange(1, 4)
        tree = IntervalTree(left[order], right[order], closed=closed)
        result = tree.is_overlapping
        expected = closed == "both"
        assert result is expected
 
    @pytest.mark.parametrize(
        "left, right",
        [
            (np.array([], dtype="int64"), np.array([], dtype="int64")),
            (np.array([0], dtype="int64"), np.array([1], dtype="int64")),
            (np.array([np.nan]), np.array([np.nan])),
            (np.array([np.nan] * 3), np.array([np.nan] * 3)),
        ],
    )
    def test_is_overlapping_trivial(self, closed, left, right):
        # GH 23309
        tree = IntervalTree(left, right, closed=closed)
        assert tree.is_overlapping is False
 
    @pytest.mark.skipif(not IS64, reason="GH 23440")
    def test_construction_overflow(self):
        # GH 25485
        left, right = np.arange(101, dtype="int64"), [np.iinfo(np.int64).max] * 101
        tree = IntervalTree(left, right)
 
        # pivot should be average of left/right medians
        result = tree.root.pivot
        expected = (50 + np.iinfo(np.int64).max) / 2
        assert result == expected
 
    @pytest.mark.xfail(not IS64, reason="GH 23440")
    @pytest.mark.parametrize(
        "left, right, expected",
        [
            ([-np.inf, 1.0], [1.0, 2.0], 0.0),
            ([-np.inf, -2.0], [-2.0, -1.0], -2.0),
            ([-2.0, -1.0], [-1.0, np.inf], 0.0),
            ([1.0, 2.0], [2.0, np.inf], 2.0),
        ],
    )
    def test_inf_bound_infinite_recursion(self, left, right, expected):
        # GH 46658
 
        tree = IntervalTree(left * 101, right * 101)
 
        result = tree.root.pivot
        assert result == expected