1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
from datetime import datetime
 
import dateutil.tz
import numpy as np
import pytest
import pytz
 
import pandas as pd
from pandas import (
    DatetimeIndex,
    Series,
)
import pandas._testing as tm
 
 
def test_format_native_types():
    index = pd.date_range(freq="1D", periods=3, start="2017-01-01")
 
    # First, with no arguments.
    expected = np.array(["2017-01-01", "2017-01-02", "2017-01-03"], dtype=object)
 
    result = index._format_native_types()
    tm.assert_numpy_array_equal(result, expected)
 
    # No NaN values, so na_rep has no effect
    result = index._format_native_types(na_rep="pandas")
    tm.assert_numpy_array_equal(result, expected)
 
    # Make sure date formatting works
    expected = np.array(["01-2017-01", "01-2017-02", "01-2017-03"], dtype=object)
 
    result = index._format_native_types(date_format="%m-%Y-%d")
    tm.assert_numpy_array_equal(result, expected)
 
    # NULL object handling should work
    index = DatetimeIndex(["2017-01-01", pd.NaT, "2017-01-03"])
    expected = np.array(["2017-01-01", "NaT", "2017-01-03"], dtype=object)
 
    result = index._format_native_types()
    tm.assert_numpy_array_equal(result, expected)
 
    expected = np.array(["2017-01-01", "pandas", "2017-01-03"], dtype=object)
 
    result = index._format_native_types(na_rep="pandas")
    tm.assert_numpy_array_equal(result, expected)
 
    result = index._format_native_types(date_format="%Y-%m-%d %H:%M:%S.%f")
    expected = np.array(
        ["2017-01-01 00:00:00.000000", "NaT", "2017-01-03 00:00:00.000000"],
        dtype=object,
    )
    tm.assert_numpy_array_equal(result, expected)
 
    # invalid format
    result = index._format_native_types(date_format="foo")
    expected = np.array(["foo", "NaT", "foo"], dtype=object)
    tm.assert_numpy_array_equal(result, expected)
 
 
class TestDatetimeIndexRendering:
    def test_dti_repr_short(self):
        dr = pd.date_range(start="1/1/2012", periods=1)
        repr(dr)
 
        dr = pd.date_range(start="1/1/2012", periods=2)
        repr(dr)
 
        dr = pd.date_range(start="1/1/2012", periods=3)
        repr(dr)
 
    @pytest.mark.parametrize("method", ["__repr__", "__str__"])
    def test_dti_representation(self, method):
        idxs = []
        idxs.append(DatetimeIndex([], freq="D"))
        idxs.append(DatetimeIndex(["2011-01-01"], freq="D"))
        idxs.append(DatetimeIndex(["2011-01-01", "2011-01-02"], freq="D"))
        idxs.append(DatetimeIndex(["2011-01-01", "2011-01-02", "2011-01-03"], freq="D"))
        idxs.append(
            DatetimeIndex(
                ["2011-01-01 09:00", "2011-01-01 10:00", "2011-01-01 11:00"],
                freq="H",
                tz="Asia/Tokyo",
            )
        )
        idxs.append(
            DatetimeIndex(
                ["2011-01-01 09:00", "2011-01-01 10:00", pd.NaT], tz="US/Eastern"
            )
        )
        idxs.append(
            DatetimeIndex(["2011-01-01 09:00", "2011-01-01 10:00", pd.NaT], tz="UTC")
        )
 
        exp = []
        exp.append("DatetimeIndex([], dtype='datetime64[ns]', freq='D')")
        exp.append("DatetimeIndex(['2011-01-01'], dtype='datetime64[ns]', freq='D')")
        exp.append(
            "DatetimeIndex(['2011-01-01', '2011-01-02'], "
            "dtype='datetime64[ns]', freq='D')"
        )
        exp.append(
            "DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], "
            "dtype='datetime64[ns]', freq='D')"
        )
        exp.append(
            "DatetimeIndex(['2011-01-01 09:00:00+09:00', "
            "'2011-01-01 10:00:00+09:00', '2011-01-01 11:00:00+09:00']"
            ", dtype='datetime64[ns, Asia/Tokyo]', freq='H')"
        )
        exp.append(
            "DatetimeIndex(['2011-01-01 09:00:00-05:00', "
            "'2011-01-01 10:00:00-05:00', 'NaT'], "
            "dtype='datetime64[ns, US/Eastern]', freq=None)"
        )
        exp.append(
            "DatetimeIndex(['2011-01-01 09:00:00+00:00', "
            "'2011-01-01 10:00:00+00:00', 'NaT'], "
            "dtype='datetime64[ns, UTC]', freq=None)"
            ""
        )
 
        with pd.option_context("display.width", 300):
            for indx, expected in zip(idxs, exp):
                result = getattr(indx, method)()
                assert result == expected
 
    def test_dti_representation_to_series(self):
        idx1 = DatetimeIndex([], freq="D")
        idx2 = DatetimeIndex(["2011-01-01"], freq="D")
        idx3 = DatetimeIndex(["2011-01-01", "2011-01-02"], freq="D")
        idx4 = DatetimeIndex(["2011-01-01", "2011-01-02", "2011-01-03"], freq="D")
        idx5 = DatetimeIndex(
            ["2011-01-01 09:00", "2011-01-01 10:00", "2011-01-01 11:00"],
            freq="H",
            tz="Asia/Tokyo",
        )
        idx6 = DatetimeIndex(
            ["2011-01-01 09:00", "2011-01-01 10:00", pd.NaT], tz="US/Eastern"
        )
        idx7 = DatetimeIndex(["2011-01-01 09:00", "2011-01-02 10:15"])
 
        exp1 = """Series([], dtype: datetime64[ns])"""
 
        exp2 = "0   2011-01-01\ndtype: datetime64[ns]"
 
        exp3 = "0   2011-01-01\n1   2011-01-02\ndtype: datetime64[ns]"
 
        exp4 = (
            "0   2011-01-01\n"
            "1   2011-01-02\n"
            "2   2011-01-03\n"
            "dtype: datetime64[ns]"
        )
 
        exp5 = (
            "0   2011-01-01 09:00:00+09:00\n"
            "1   2011-01-01 10:00:00+09:00\n"
            "2   2011-01-01 11:00:00+09:00\n"
            "dtype: datetime64[ns, Asia/Tokyo]"
        )
 
        exp6 = (
            "0   2011-01-01 09:00:00-05:00\n"
            "1   2011-01-01 10:00:00-05:00\n"
            "2                         NaT\n"
            "dtype: datetime64[ns, US/Eastern]"
        )
 
        exp7 = (
            "0   2011-01-01 09:00:00\n"
            "1   2011-01-02 10:15:00\n"
            "dtype: datetime64[ns]"
        )
 
        with pd.option_context("display.width", 300):
            for idx, expected in zip(
                [idx1, idx2, idx3, idx4, idx5, idx6, idx7],
                [exp1, exp2, exp3, exp4, exp5, exp6, exp7],
            ):
                result = repr(Series(idx))
                assert result == expected
 
    def test_dti_summary(self):
        # GH#9116
        idx1 = DatetimeIndex([], freq="D")
        idx2 = DatetimeIndex(["2011-01-01"], freq="D")
        idx3 = DatetimeIndex(["2011-01-01", "2011-01-02"], freq="D")
        idx4 = DatetimeIndex(["2011-01-01", "2011-01-02", "2011-01-03"], freq="D")
        idx5 = DatetimeIndex(
            ["2011-01-01 09:00", "2011-01-01 10:00", "2011-01-01 11:00"],
            freq="H",
            tz="Asia/Tokyo",
        )
        idx6 = DatetimeIndex(
            ["2011-01-01 09:00", "2011-01-01 10:00", pd.NaT], tz="US/Eastern"
        )
 
        exp1 = "DatetimeIndex: 0 entries\nFreq: D"
 
        exp2 = "DatetimeIndex: 1 entries, 2011-01-01 to 2011-01-01\nFreq: D"
 
        exp3 = "DatetimeIndex: 2 entries, 2011-01-01 to 2011-01-02\nFreq: D"
 
        exp4 = "DatetimeIndex: 3 entries, 2011-01-01 to 2011-01-03\nFreq: D"
 
        exp5 = (
            "DatetimeIndex: 3 entries, 2011-01-01 09:00:00+09:00 "
            "to 2011-01-01 11:00:00+09:00\n"
            "Freq: H"
        )
 
        exp6 = """DatetimeIndex: 3 entries, 2011-01-01 09:00:00-05:00 to NaT"""
 
        for idx, expected in zip(
            [idx1, idx2, idx3, idx4, idx5, idx6], [exp1, exp2, exp3, exp4, exp5, exp6]
        ):
            result = idx._summary()
            assert result == expected
 
    def test_dti_business_repr(self):
        # only really care that it works
        repr(pd.bdate_range(datetime(2009, 1, 1), datetime(2010, 1, 1)))
 
    def test_dti_business_summary(self):
        rng = pd.bdate_range(datetime(2009, 1, 1), datetime(2010, 1, 1))
        rng._summary()
        rng[2:2]._summary()
 
    def test_dti_business_summary_pytz(self):
        pd.bdate_range("1/1/2005", "1/1/2009", tz=pytz.utc)._summary()
 
    def test_dti_business_summary_dateutil(self):
        pd.bdate_range("1/1/2005", "1/1/2009", tz=dateutil.tz.tzutc())._summary()
 
    def test_dti_custom_business_repr(self):
        # only really care that it works
        repr(pd.bdate_range(datetime(2009, 1, 1), datetime(2010, 1, 1), freq="C"))
 
    def test_dti_custom_business_summary(self):
        rng = pd.bdate_range(datetime(2009, 1, 1), datetime(2010, 1, 1), freq="C")
        rng._summary()
        rng[2:2]._summary()
 
    def test_dti_custom_business_summary_pytz(self):
        pd.bdate_range("1/1/2005", "1/1/2009", freq="C", tz=pytz.utc)._summary()
 
    def test_dti_custom_business_summary_dateutil(self):
        pd.bdate_range(
            "1/1/2005", "1/1/2009", freq="C", tz=dateutil.tz.tzutc()
        )._summary()
 
 
class TestFormat:
    def test_format_with_name_time_info(self):
        # bug I fixed 12/20/2011
        dates = pd.date_range("2011-01-01 04:00:00", periods=10, name="something")
 
        formatted = dates.format(name=True)
        assert formatted[0] == "something"
 
    def test_format_datetime_with_time(self):
        dti = DatetimeIndex([datetime(2012, 2, 7), datetime(2012, 2, 7, 23)])
 
        result = dti.format()
        expected = ["2012-02-07 00:00:00", "2012-02-07 23:00:00"]
        assert len(result) == 2
        assert result == expected