1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
from __future__ import annotations
 
from datetime import datetime
import gc
 
import numpy as np
import pytest
 
from pandas._libs.tslibs import Timestamp
 
from pandas.core.dtypes.common import (
    is_datetime64tz_dtype,
    is_integer_dtype,
)
from pandas.core.dtypes.dtypes import CategoricalDtype
 
import pandas as pd
from pandas import (
    CategoricalIndex,
    DatetimeIndex,
    Index,
    IntervalIndex,
    MultiIndex,
    PeriodIndex,
    RangeIndex,
    Series,
    TimedeltaIndex,
    isna,
)
import pandas._testing as tm
from pandas.core.arrays import BaseMaskedArray
 
 
class Base:
    """
    Base class for index sub-class tests.
    """
 
    _index_cls: type[Index]
 
    @pytest.fixture
    def simple_index(self):
        raise NotImplementedError("Method not implemented")
 
    def create_index(self) -> Index:
        raise NotImplementedError("Method not implemented")
 
    def test_pickle_compat_construction(self):
        # need an object to create with
        msg = "|".join(
            [
                r"Index\(\.\.\.\) must be called with a collection of some "
                r"kind, None was passed",
                r"DatetimeIndex\(\) must be called with a collection of some "
                r"kind, None was passed",
                r"TimedeltaIndex\(\) must be called with a collection of some "
                r"kind, None was passed",
                r"__new__\(\) missing 1 required positional argument: 'data'",
                r"__new__\(\) takes at least 2 arguments \(1 given\)",
            ]
        )
        with pytest.raises(TypeError, match=msg):
            self._index_cls()
 
    def test_shift(self, simple_index):
        # GH8083 test the base class for shift
        idx = simple_index
        msg = (
            f"This method is only implemented for DatetimeIndex, PeriodIndex and "
            f"TimedeltaIndex; Got type {type(idx).__name__}"
        )
        with pytest.raises(NotImplementedError, match=msg):
            idx.shift(1)
        with pytest.raises(NotImplementedError, match=msg):
            idx.shift(1, 2)
 
    def test_constructor_name_unhashable(self, simple_index):
        # GH#29069 check that name is hashable
        # See also same-named test in tests.series.test_constructors
        idx = simple_index
        with pytest.raises(TypeError, match="Index.name must be a hashable type"):
            type(idx)(idx, name=[])
 
    def test_create_index_existing_name(self, simple_index):
        # GH11193, when an existing index is passed, and a new name is not
        # specified, the new index should inherit the previous object name
        expected = simple_index
        if not isinstance(expected, MultiIndex):
            expected.name = "foo"
            result = Index(expected)
            tm.assert_index_equal(result, expected)
 
            result = Index(expected, name="bar")
            expected.name = "bar"
            tm.assert_index_equal(result, expected)
        else:
            expected.names = ["foo", "bar"]
            result = Index(expected)
            tm.assert_index_equal(
                result,
                Index(
                    Index(
                        [
                            ("foo", "one"),
                            ("foo", "two"),
                            ("bar", "one"),
                            ("baz", "two"),
                            ("qux", "one"),
                            ("qux", "two"),
                        ],
                        dtype="object",
                    ),
                    names=["foo", "bar"],
                ),
            )
 
            result = Index(expected, names=["A", "B"])
            tm.assert_index_equal(
                result,
                Index(
                    Index(
                        [
                            ("foo", "one"),
                            ("foo", "two"),
                            ("bar", "one"),
                            ("baz", "two"),
                            ("qux", "one"),
                            ("qux", "two"),
                        ],
                        dtype="object",
                    ),
                    names=["A", "B"],
                ),
            )
 
    def test_numeric_compat(self, simple_index):
        idx = simple_index
        # Check that this doesn't cover MultiIndex case, if/when it does,
        #  we can remove multi.test_compat.test_numeric_compat
        assert not isinstance(idx, MultiIndex)
        if type(idx) is Index:
            return
 
        typ = type(idx._data).__name__
        cls = type(idx).__name__
        lmsg = "|".join(
            [
                rf"unsupported operand type\(s\) for \*: '{typ}' and 'int'",
                "cannot perform (__mul__|__truediv__|__floordiv__) with "
                f"this index type: ({cls}|{typ})",
            ]
        )
        with pytest.raises(TypeError, match=lmsg):
            idx * 1
        rmsg = "|".join(
            [
                rf"unsupported operand type\(s\) for \*: 'int' and '{typ}'",
                "cannot perform (__rmul__|__rtruediv__|__rfloordiv__) with "
                f"this index type: ({cls}|{typ})",
            ]
        )
        with pytest.raises(TypeError, match=rmsg):
            1 * idx
 
        div_err = lmsg.replace("*", "/")
        with pytest.raises(TypeError, match=div_err):
            idx / 1
        div_err = rmsg.replace("*", "/")
        with pytest.raises(TypeError, match=div_err):
            1 / idx
 
        floordiv_err = lmsg.replace("*", "//")
        with pytest.raises(TypeError, match=floordiv_err):
            idx // 1
        floordiv_err = rmsg.replace("*", "//")
        with pytest.raises(TypeError, match=floordiv_err):
            1 // idx
 
    def test_logical_compat(self, simple_index):
        idx = simple_index
        with pytest.raises(TypeError, match="cannot perform all"):
            idx.all()
        with pytest.raises(TypeError, match="cannot perform any"):
            idx.any()
 
    def test_repr_roundtrip(self, simple_index):
        idx = simple_index
        tm.assert_index_equal(eval(repr(idx)), idx)
 
    def test_repr_max_seq_item_setting(self, simple_index):
        # GH10182
        idx = simple_index
        idx = idx.repeat(50)
        with pd.option_context("display.max_seq_items", None):
            repr(idx)
            assert "..." not in str(idx)
 
    def test_ensure_copied_data(self, index):
        # Check the "copy" argument of each Index.__new__ is honoured
        # GH12309
        init_kwargs = {}
        if isinstance(index, PeriodIndex):
            # Needs "freq" specification:
            init_kwargs["freq"] = index.freq
        elif isinstance(index, (RangeIndex, MultiIndex, CategoricalIndex)):
            # RangeIndex cannot be initialized from data
            # MultiIndex and CategoricalIndex are tested separately
            return
        elif index.dtype == object and index.inferred_type == "boolean":
            init_kwargs["dtype"] = index.dtype
 
        index_type = type(index)
        result = index_type(index.values, copy=True, **init_kwargs)
        if is_datetime64tz_dtype(index.dtype):
            result = result.tz_localize("UTC").tz_convert(index.tz)
        if isinstance(index, (DatetimeIndex, TimedeltaIndex)):
            index = index._with_freq(None)
 
        tm.assert_index_equal(index, result)
 
        if isinstance(index, PeriodIndex):
            # .values an object array of Period, thus copied
            result = index_type(ordinal=index.asi8, copy=False, **init_kwargs)
            tm.assert_numpy_array_equal(index.asi8, result.asi8, check_same="same")
        elif isinstance(index, IntervalIndex):
            # checked in test_interval.py
            pass
        elif type(index) is Index and not isinstance(index.dtype, np.dtype):
            result = index_type(index.values, copy=False, **init_kwargs)
            tm.assert_index_equal(result, index)
 
            if isinstance(index._values, BaseMaskedArray):
                assert np.shares_memory(index._values._data, result._values._data)
                tm.assert_numpy_array_equal(
                    index._values._data, result._values._data, check_same="same"
                )
                assert np.shares_memory(index._values._mask, result._values._mask)
                tm.assert_numpy_array_equal(
                    index._values._mask, result._values._mask, check_same="same"
                )
            elif index.dtype == "string[python]":
                assert np.shares_memory(index._values._ndarray, result._values._ndarray)
                tm.assert_numpy_array_equal(
                    index._values._ndarray, result._values._ndarray, check_same="same"
                )
            elif index.dtype == "string[pyarrow]":
                assert tm.shares_memory(result._values, index._values)
            else:
                raise NotImplementedError(index.dtype)
        else:
            result = index_type(index.values, copy=False, **init_kwargs)
            tm.assert_numpy_array_equal(index.values, result.values, check_same="same")
 
    def test_memory_usage(self, index):
        index._engine.clear_mapping()
        result = index.memory_usage()
        if index.empty:
            # we report 0 for no-length
            assert result == 0
            return
 
        # non-zero length
        index.get_loc(index[0])
        result2 = index.memory_usage()
        result3 = index.memory_usage(deep=True)
 
        # RangeIndex, IntervalIndex
        # don't have engines
        # Index[EA] has engine but it does not have a Hashtable .mapping
        if not isinstance(index, (RangeIndex, IntervalIndex)) and not (
            type(index) is Index and not isinstance(index.dtype, np.dtype)
        ):
            assert result2 > result
 
        if index.inferred_type == "object":
            assert result3 > result2
 
    def test_argsort(self, index):
        # separately tested
        if isinstance(index, CategoricalIndex):
            return
 
        result = index.argsort()
        expected = np.array(index).argsort()
        tm.assert_numpy_array_equal(result, expected, check_dtype=False)
 
    def test_numpy_argsort(self, index):
        result = np.argsort(index)
        expected = index.argsort()
        tm.assert_numpy_array_equal(result, expected)
 
        result = np.argsort(index, kind="mergesort")
        expected = index.argsort(kind="mergesort")
        tm.assert_numpy_array_equal(result, expected)
 
        # these are the only two types that perform
        # pandas compatibility input validation - the
        # rest already perform separate (or no) such
        # validation via their 'values' attribute as
        # defined in pandas.core.indexes/base.py - they
        # cannot be changed at the moment due to
        # backwards compatibility concerns
        if isinstance(index, (CategoricalIndex, RangeIndex)):
            msg = "the 'axis' parameter is not supported"
            with pytest.raises(ValueError, match=msg):
                np.argsort(index, axis=1)
 
            msg = "the 'order' parameter is not supported"
            with pytest.raises(ValueError, match=msg):
                np.argsort(index, order=("a", "b"))
 
    def test_repeat(self, simple_index):
        rep = 2
        idx = simple_index.copy()
        new_index_cls = idx._constructor
        expected = new_index_cls(idx.values.repeat(rep), name=idx.name)
        tm.assert_index_equal(idx.repeat(rep), expected)
 
        idx = simple_index
        rep = np.arange(len(idx))
        expected = new_index_cls(idx.values.repeat(rep), name=idx.name)
        tm.assert_index_equal(idx.repeat(rep), expected)
 
    def test_numpy_repeat(self, simple_index):
        rep = 2
        idx = simple_index
        expected = idx.repeat(rep)
        tm.assert_index_equal(np.repeat(idx, rep), expected)
 
        msg = "the 'axis' parameter is not supported"
        with pytest.raises(ValueError, match=msg):
            np.repeat(idx, rep, axis=0)
 
    def test_where(self, listlike_box, simple_index):
        klass = listlike_box
 
        idx = simple_index
        if isinstance(idx, (DatetimeIndex, TimedeltaIndex)):
            # where does not preserve freq
            idx = idx._with_freq(None)
 
        cond = [True] * len(idx)
        result = idx.where(klass(cond))
        expected = idx
        tm.assert_index_equal(result, expected)
 
        cond = [False] + [True] * len(idx[1:])
        expected = Index([idx._na_value] + idx[1:].tolist(), dtype=idx.dtype)
        result = idx.where(klass(cond))
        tm.assert_index_equal(result, expected)
 
    def test_insert_base(self, index):
        result = index[1:4]
 
        if not len(index):
            return
 
        # test 0th element
        assert index[0:4].equals(result.insert(0, index[0]))
 
    def test_insert_out_of_bounds(self, index):
        # TypeError/IndexError matches what np.insert raises in these cases
 
        if len(index) > 0:
            err = TypeError
        else:
            err = IndexError
        if len(index) == 0:
            # 0 vs 0.5 in error message varies with numpy version
            msg = "index (0|0.5) is out of bounds for axis 0 with size 0"
        else:
            msg = "slice indices must be integers or None or have an __index__ method"
        with pytest.raises(err, match=msg):
            index.insert(0.5, "foo")
 
        msg = "|".join(
            [
                r"index -?\d+ is out of bounds for axis 0 with size \d+",
                "loc must be an integer between",
            ]
        )
        with pytest.raises(IndexError, match=msg):
            index.insert(len(index) + 1, 1)
 
        with pytest.raises(IndexError, match=msg):
            index.insert(-len(index) - 1, 1)
 
    def test_delete_base(self, index):
        if not len(index):
            return
 
        if isinstance(index, RangeIndex):
            # tested in class
            return
 
        expected = index[1:]
        result = index.delete(0)
        assert result.equals(expected)
        assert result.name == expected.name
 
        expected = index[:-1]
        result = index.delete(-1)
        assert result.equals(expected)
        assert result.name == expected.name
 
        length = len(index)
        msg = f"index {length} is out of bounds for axis 0 with size {length}"
        with pytest.raises(IndexError, match=msg):
            index.delete(length)
 
    def test_equals(self, index):
        if isinstance(index, IntervalIndex):
            # IntervalIndex tested separately, the index.equals(index.astype(object))
            #  fails for IntervalIndex
            return
 
        is_ea_idx = type(index) is Index and not isinstance(index.dtype, np.dtype)
 
        assert index.equals(index)
        assert index.equals(index.copy())
        if not is_ea_idx:
            # doesn't hold for e.g. IntegerDtype
            assert index.equals(index.astype(object))
 
        assert not index.equals(list(index))
        assert not index.equals(np.array(index))
 
        # Cannot pass in non-int64 dtype to RangeIndex
        if not isinstance(index, RangeIndex) and not is_ea_idx:
            same_values = Index(index, dtype=object)
            assert index.equals(same_values)
            assert same_values.equals(index)
 
        if index.nlevels == 1:
            # do not test MultiIndex
            assert not index.equals(Series(index))
 
    def test_equals_op(self, simple_index):
        # GH9947, GH10637
        index_a = simple_index
 
        n = len(index_a)
        index_b = index_a[0:-1]
        index_c = index_a[0:-1].append(index_a[-2:-1])
        index_d = index_a[0:1]
 
        msg = "Lengths must match|could not be broadcast"
        with pytest.raises(ValueError, match=msg):
            index_a == index_b
        expected1 = np.array([True] * n)
        expected2 = np.array([True] * (n - 1) + [False])
        tm.assert_numpy_array_equal(index_a == index_a, expected1)
        tm.assert_numpy_array_equal(index_a == index_c, expected2)
 
        # test comparisons with numpy arrays
        array_a = np.array(index_a)
        array_b = np.array(index_a[0:-1])
        array_c = np.array(index_a[0:-1].append(index_a[-2:-1]))
        array_d = np.array(index_a[0:1])
        with pytest.raises(ValueError, match=msg):
            index_a == array_b
        tm.assert_numpy_array_equal(index_a == array_a, expected1)
        tm.assert_numpy_array_equal(index_a == array_c, expected2)
 
        # test comparisons with Series
        series_a = Series(array_a)
        series_b = Series(array_b)
        series_c = Series(array_c)
        series_d = Series(array_d)
        with pytest.raises(ValueError, match=msg):
            index_a == series_b
 
        tm.assert_numpy_array_equal(index_a == series_a, expected1)
        tm.assert_numpy_array_equal(index_a == series_c, expected2)
 
        # cases where length is 1 for one of them
        with pytest.raises(ValueError, match="Lengths must match"):
            index_a == index_d
        with pytest.raises(ValueError, match="Lengths must match"):
            index_a == series_d
        with pytest.raises(ValueError, match="Lengths must match"):
            index_a == array_d
        msg = "Can only compare identically-labeled Series objects"
        with pytest.raises(ValueError, match=msg):
            series_a == series_d
        with pytest.raises(ValueError, match="Lengths must match"):
            series_a == array_d
 
        # comparing with a scalar should broadcast; note that we are excluding
        # MultiIndex because in this case each item in the index is a tuple of
        # length 2, and therefore is considered an array of length 2 in the
        # comparison instead of a scalar
        if not isinstance(index_a, MultiIndex):
            expected3 = np.array([False] * (len(index_a) - 2) + [True, False])
            # assuming the 2nd to last item is unique in the data
            item = index_a[-2]
            tm.assert_numpy_array_equal(index_a == item, expected3)
            tm.assert_series_equal(series_a == item, Series(expected3))
 
    def test_format(self, simple_index):
        # GH35439
        idx = simple_index
        expected = [str(x) for x in idx]
        assert idx.format() == expected
 
    def test_format_empty(self):
        # GH35712
        empty_idx = self._index_cls([])
        assert empty_idx.format() == []
        assert empty_idx.format(name=True) == [""]
 
    def test_fillna(self, index):
        # GH 11343
        if len(index) == 0:
            return
        elif index.dtype == bool:
            # can't hold NAs
            return
        elif isinstance(index, Index) and is_integer_dtype(index.dtype):
            return
        elif isinstance(index, MultiIndex):
            idx = index.copy(deep=True)
            msg = "isna is not defined for MultiIndex"
            with pytest.raises(NotImplementedError, match=msg):
                idx.fillna(idx[0])
        else:
            idx = index.copy(deep=True)
            result = idx.fillna(idx[0])
            tm.assert_index_equal(result, idx)
            assert result is not idx
 
            msg = "'value' must be a scalar, passed: "
            with pytest.raises(TypeError, match=msg):
                idx.fillna([idx[0]])
 
            idx = index.copy(deep=True)
            values = idx._values
 
            values[1] = np.nan
 
            idx = type(index)(values)
 
            msg = "does not support 'downcast'"
            with pytest.raises(NotImplementedError, match=msg):
                # For now at least, we only raise if there are NAs present
                idx.fillna(idx[0], downcast="infer")
 
            expected = np.array([False] * len(idx), dtype=bool)
            expected[1] = True
            tm.assert_numpy_array_equal(idx._isnan, expected)
            assert idx.hasnans is True
 
    def test_nulls(self, index):
        # this is really a smoke test for the methods
        # as these are adequately tested for function elsewhere
        if len(index) == 0:
            tm.assert_numpy_array_equal(index.isna(), np.array([], dtype=bool))
        elif isinstance(index, MultiIndex):
            idx = index.copy()
            msg = "isna is not defined for MultiIndex"
            with pytest.raises(NotImplementedError, match=msg):
                idx.isna()
        elif not index.hasnans:
            tm.assert_numpy_array_equal(index.isna(), np.zeros(len(index), dtype=bool))
            tm.assert_numpy_array_equal(index.notna(), np.ones(len(index), dtype=bool))
        else:
            result = isna(index)
            tm.assert_numpy_array_equal(index.isna(), result)
            tm.assert_numpy_array_equal(index.notna(), ~result)
 
    def test_empty(self, simple_index):
        # GH 15270
        idx = simple_index
        assert not idx.empty
        assert idx[:0].empty
 
    def test_join_self_unique(self, join_type, simple_index):
        idx = simple_index
        if idx.is_unique:
            joined = idx.join(idx, how=join_type)
            assert (idx == joined).all()
 
    def test_map(self, simple_index):
        # callable
        idx = simple_index
 
        result = idx.map(lambda x: x)
        # RangeIndex are equivalent to the similar Index with int64 dtype
        tm.assert_index_equal(result, idx, exact="equiv")
 
    @pytest.mark.parametrize(
        "mapper",
        [
            lambda values, index: {i: e for e, i in zip(values, index)},
            lambda values, index: Series(values, index),
        ],
    )
    def test_map_dictlike(self, mapper, simple_index):
        idx = simple_index
        if isinstance(idx, CategoricalIndex):
            # FIXME: this fails with CategoricalIndex bc it goes through
            # Categorical.map which ends up calling get_indexer with
            #  non-unique values, which raises.  This _should_ work fine for
            #  CategoricalIndex.
            pytest.skip(f"skipping tests for {type(idx)}")
 
        identity = mapper(idx.values, idx)
 
        result = idx.map(identity)
        # RangeIndex are equivalent to the similar Index with int64 dtype
        tm.assert_index_equal(result, idx, exact="equiv")
 
        # empty mappable
        dtype = None
        if idx.dtype.kind == "f":
            dtype = idx.dtype
 
        expected = Index([np.nan] * len(idx), dtype=dtype)
        result = idx.map(mapper(expected, idx))
        tm.assert_index_equal(result, expected)
 
    def test_map_str(self, simple_index):
        # GH 31202
        idx = simple_index
        result = idx.map(str)
        expected = Index([str(x) for x in idx], dtype=object)
        tm.assert_index_equal(result, expected)
 
    @pytest.mark.parametrize("copy", [True, False])
    @pytest.mark.parametrize("name", [None, "foo"])
    @pytest.mark.parametrize("ordered", [True, False])
    def test_astype_category(self, copy, name, ordered, simple_index):
        # GH 18630
        idx = simple_index
        if name:
            idx = idx.rename(name)
 
        # standard categories
        dtype = CategoricalDtype(ordered=ordered)
        result = idx.astype(dtype, copy=copy)
        expected = CategoricalIndex(idx, name=name, ordered=ordered)
        tm.assert_index_equal(result, expected, exact=True)
 
        # non-standard categories
        dtype = CategoricalDtype(idx.unique().tolist()[:-1], ordered)
        result = idx.astype(dtype, copy=copy)
        expected = CategoricalIndex(idx, name=name, dtype=dtype)
        tm.assert_index_equal(result, expected, exact=True)
 
        if ordered is False:
            # dtype='category' defaults to ordered=False, so only test once
            result = idx.astype("category", copy=copy)
            expected = CategoricalIndex(idx, name=name)
            tm.assert_index_equal(result, expected, exact=True)
 
    def test_is_unique(self, simple_index):
        # initialize a unique index
        index = simple_index.drop_duplicates()
        assert index.is_unique is True
 
        # empty index should be unique
        index_empty = index[:0]
        assert index_empty.is_unique is True
 
        # test basic dupes
        index_dup = index.insert(0, index[0])
        assert index_dup.is_unique is False
 
        # single NA should be unique
        index_na = index.insert(0, np.nan)
        assert index_na.is_unique is True
 
        # multiple NA should not be unique
        index_na_dup = index_na.insert(0, np.nan)
        assert index_na_dup.is_unique is False
 
    @pytest.mark.arm_slow
    def test_engine_reference_cycle(self, simple_index):
        # GH27585
        index = simple_index
        nrefs_pre = len(gc.get_referrers(index))
        index._engine
        assert len(gc.get_referrers(index)) == nrefs_pre
 
    def test_getitem_2d_deprecated(self, simple_index):
        # GH#30588, GH#31479
        idx = simple_index
        msg = "Multi-dimensional indexing"
        with pytest.raises(ValueError, match=msg):
            idx[:, None]
 
        if not isinstance(idx, RangeIndex):
            # GH#44051 RangeIndex already raised pre-2.0 with a different message
            with pytest.raises(ValueError, match=msg):
                idx[True]
            with pytest.raises(ValueError, match=msg):
                idx[False]
        else:
            msg = "only integers, slices"
            with pytest.raises(IndexError, match=msg):
                idx[True]
            with pytest.raises(IndexError, match=msg):
                idx[False]
 
    def test_copy_shares_cache(self, simple_index):
        # GH32898, GH36840
        idx = simple_index
        idx.get_loc(idx[0])  # populates the _cache.
        copy = idx.copy()
 
        assert copy._cache is idx._cache
 
    def test_shallow_copy_shares_cache(self, simple_index):
        # GH32669, GH36840
        idx = simple_index
        idx.get_loc(idx[0])  # populates the _cache.
        shallow_copy = idx._view()
 
        assert shallow_copy._cache is idx._cache
 
        shallow_copy = idx._shallow_copy(idx._data)
        assert shallow_copy._cache is not idx._cache
        assert shallow_copy._cache == {}
 
    def test_index_groupby(self, simple_index):
        idx = simple_index[:5]
        to_groupby = np.array([1, 2, np.nan, 2, 1])
        tm.assert_dict_equal(
            idx.groupby(to_groupby), {1.0: idx[[0, 4]], 2.0: idx[[1, 3]]}
        )
 
        to_groupby = DatetimeIndex(
            [
                datetime(2011, 11, 1),
                datetime(2011, 12, 1),
                pd.NaT,
                datetime(2011, 12, 1),
                datetime(2011, 11, 1),
            ],
            tz="UTC",
        ).values
 
        ex_keys = [Timestamp("2011-11-01"), Timestamp("2011-12-01")]
        expected = {ex_keys[0]: idx[[0, 4]], ex_keys[1]: idx[[1, 3]]}
        tm.assert_dict_equal(idx.groupby(to_groupby), expected)
 
    def test_append_preserves_dtype(self, simple_index):
        # In particular Index with dtype float32
        index = simple_index
        N = len(index)
 
        result = index.append(index)
        assert result.dtype == index.dtype
        tm.assert_index_equal(result[:N], index, check_exact=True)
        tm.assert_index_equal(result[N:], index, check_exact=True)
 
        alt = index.take(list(range(N)) * 2)
        tm.assert_index_equal(result, alt, check_exact=True)
 
    def test_inv(self, simple_index):
        idx = simple_index
 
        if idx.dtype.kind in ["i", "u"]:
            res = ~idx
            expected = Index(~idx.values, name=idx.name)
            tm.assert_index_equal(res, expected)
 
            # check that we are matching Series behavior
            res2 = ~Series(idx)
            tm.assert_series_equal(res2, Series(expected))
        else:
            if idx.dtype.kind == "f":
                msg = "ufunc 'invert' not supported for the input types"
            else:
                msg = "bad operand"
            with pytest.raises(TypeError, match=msg):
                ~idx
 
            # check that we get the same behavior with Series
            with pytest.raises(TypeError, match=msg):
                ~Series(idx)
 
    def test_is_boolean_is_deprecated(self, simple_index):
        # GH50042
        idx = simple_index
        with tm.assert_produces_warning(FutureWarning):
            idx.is_boolean()
 
    def test_is_floating_is_deprecated(self, simple_index):
        # GH50042
        idx = simple_index
        with tm.assert_produces_warning(FutureWarning):
            idx.is_floating()
 
    def test_is_integer_is_deprecated(self, simple_index):
        # GH50042
        idx = simple_index
        with tm.assert_produces_warning(FutureWarning):
            idx.is_integer()
 
    def test_holds_integer_deprecated(self, simple_index):
        # GH50243
        idx = simple_index
        msg = f"{type(idx).__name__}.holds_integer is deprecated. "
        with tm.assert_produces_warning(FutureWarning, match=msg):
            idx.holds_integer()
 
    def test_is_numeric_is_deprecated(self, simple_index):
        # GH50042
        idx = simple_index
        with tm.assert_produces_warning(
            FutureWarning,
            match=f"{type(idx).__name__}.is_numeric is deprecated. ",
        ):
            idx.is_numeric()
 
    def test_is_categorical_is_deprecated(self, simple_index):
        # GH50042
        idx = simple_index
        with tm.assert_produces_warning(
            FutureWarning,
            match=r"Use pandas\.api\.types\.is_categorical_dtype instead",
        ):
            idx.is_categorical()
 
    def test_is_interval_is_deprecated(self, simple_index):
        # GH50042
        idx = simple_index
        with tm.assert_produces_warning(FutureWarning):
            idx.is_interval()
 
    def test_is_object_is_deprecated(self, simple_index):
        # GH50042
        idx = simple_index
        with tm.assert_produces_warning(FutureWarning):
            idx.is_object()
 
 
class NumericBase(Base):
    """
    Base class for numeric index (incl. RangeIndex) sub-class tests.
    """
 
    def test_constructor_unwraps_index(self, dtype):
        index_cls = self._index_cls
 
        idx = Index([1, 2], dtype=dtype)
        result = index_cls(idx)
        expected = np.array([1, 2], dtype=idx.dtype)
        tm.assert_numpy_array_equal(result._data, expected)
 
    def test_where(self):
        # Tested in numeric.test_indexing
        pass
 
    def test_can_hold_identifiers(self, simple_index):
        idx = simple_index
        key = idx[0]
        assert idx._can_hold_identifiers_and_holds_name(key) is False
 
    def test_view(self, dtype):
        index_cls = self._index_cls
 
        idx = index_cls([], dtype=dtype, name="Foo")
        idx_view = idx.view()
        assert idx_view.name == "Foo"
 
        idx_view = idx.view(dtype)
        tm.assert_index_equal(idx, index_cls(idx_view, name="Foo"), exact=True)
 
        idx_view = idx.view(index_cls)
        tm.assert_index_equal(idx, index_cls(idx_view, name="Foo"), exact=True)
 
    def test_format(self, simple_index):
        # GH35439
        idx = simple_index
        max_width = max(len(str(x)) for x in idx)
        expected = [str(x).ljust(max_width) for x in idx]
        assert idx.format() == expected
 
    def test_numeric_compat(self):
        pass  # override Base method
 
    def test_insert_non_na(self, simple_index):
        # GH#43921 inserting an element that we know we can hold should
        #  not change dtype or type (except for RangeIndex)
        index = simple_index
 
        result = index.insert(0, index[0])
 
        expected = Index([index[0]] + list(index), dtype=index.dtype)
        tm.assert_index_equal(result, expected, exact=True)
 
    def test_insert_na(self, nulls_fixture, simple_index):
        # GH 18295 (test missing)
        index = simple_index
        na_val = nulls_fixture
 
        if na_val is pd.NaT:
            expected = Index([index[0], pd.NaT] + list(index[1:]), dtype=object)
        else:
            expected = Index([index[0], np.nan] + list(index[1:]))
            # GH#43921 we preserve float dtype
            if index.dtype.kind == "f":
                expected = Index(expected, dtype=index.dtype)
 
        result = index.insert(1, na_val)
        tm.assert_index_equal(result, expected, exact=True)
 
    def test_arithmetic_explicit_conversions(self):
        # GH 8608
        # add/sub are overridden explicitly for Float/Int Index
        index_cls = self._index_cls
        if index_cls is RangeIndex:
            idx = RangeIndex(5)
        else:
            idx = index_cls(np.arange(5, dtype="int64"))
 
        # float conversions
        arr = np.arange(5, dtype="int64") * 3.2
        expected = Index(arr, dtype=np.float64)
        fidx = idx * 3.2
        tm.assert_index_equal(fidx, expected)
        fidx = 3.2 * idx
        tm.assert_index_equal(fidx, expected)
 
        # interops with numpy arrays
        expected = Index(arr, dtype=np.float64)
        a = np.zeros(5, dtype="float64")
        result = fidx - a
        tm.assert_index_equal(result, expected)
 
        expected = Index(-arr, dtype=np.float64)
        a = np.zeros(5, dtype="float64")
        result = a - fidx
        tm.assert_index_equal(result, expected)
 
    @pytest.mark.parametrize("complex_dtype", [np.complex64, np.complex128])
    def test_astype_to_complex(self, complex_dtype, simple_index):
        result = simple_index.astype(complex_dtype)
 
        assert type(result) is Index and result.dtype == complex_dtype
 
    def test_cast_string(self, dtype):
        result = self._index_cls(["0", "1", "2"], dtype=dtype)
        expected = self._index_cls([0, 1, 2], dtype=dtype)
        tm.assert_index_equal(result, expected)