1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
import numpy as np
import pytest
 
import pandas.util._test_decorators as td
 
from pandas import (
    DataFrame,
    NaT,
    Series,
    date_range,
)
import pandas._testing as tm
 
 
class TestDataFrameInterpolate:
    def test_interpolate_datetimelike_values(self, frame_or_series):
        # GH#11312, GH#51005
        orig = Series(date_range("2012-01-01", periods=5))
        ser = orig.copy()
        ser[2] = NaT
 
        res = frame_or_series(ser).interpolate()
        expected = frame_or_series(orig)
        tm.assert_equal(res, expected)
 
        # datetime64tz cast
        ser_tz = ser.dt.tz_localize("US/Pacific")
        res_tz = frame_or_series(ser_tz).interpolate()
        expected_tz = frame_or_series(orig.dt.tz_localize("US/Pacific"))
        tm.assert_equal(res_tz, expected_tz)
 
        # timedelta64 cast
        ser_td = ser - ser[0]
        res_td = frame_or_series(ser_td).interpolate()
        expected_td = frame_or_series(orig - orig[0])
        tm.assert_equal(res_td, expected_td)
 
    def test_interpolate_inplace(self, frame_or_series, using_array_manager, request):
        # GH#44749
        if using_array_manager and frame_or_series is DataFrame:
            mark = pytest.mark.xfail(reason=".values-based in-place check is invalid")
            request.node.add_marker(mark)
 
        obj = frame_or_series([1, np.nan, 2])
        orig = obj.values
 
        obj.interpolate(inplace=True)
        expected = frame_or_series([1, 1.5, 2])
        tm.assert_equal(obj, expected)
 
        # check we operated *actually* inplace
        assert np.shares_memory(orig, obj.values)
        assert orig.squeeze()[1] == 1.5
 
    def test_interp_basic(self, using_copy_on_write):
        df = DataFrame(
            {
                "A": [1, 2, np.nan, 4],
                "B": [1, 4, 9, np.nan],
                "C": [1, 2, 3, 5],
                "D": list("abcd"),
            }
        )
        expected = DataFrame(
            {
                "A": [1.0, 2.0, 3.0, 4.0],
                "B": [1.0, 4.0, 9.0, 9.0],
                "C": [1, 2, 3, 5],
                "D": list("abcd"),
            }
        )
        result = df.interpolate()
        tm.assert_frame_equal(result, expected)
 
        # check we didn't operate inplace GH#45791
        cvalues = df["C"]._values
        dvalues = df["D"].values
        if using_copy_on_write:
            assert np.shares_memory(cvalues, result["C"]._values)
            assert np.shares_memory(dvalues, result["D"]._values)
        else:
            assert not np.shares_memory(cvalues, result["C"]._values)
            assert not np.shares_memory(dvalues, result["D"]._values)
 
        res = df.interpolate(inplace=True)
        assert res is None
        tm.assert_frame_equal(df, expected)
 
        # check we DID operate inplace
        assert np.shares_memory(df["C"]._values, cvalues)
        assert np.shares_memory(df["D"]._values, dvalues)
 
    def test_interp_basic_with_non_range_index(self):
        df = DataFrame(
            {
                "A": [1, 2, np.nan, 4],
                "B": [1, 4, 9, np.nan],
                "C": [1, 2, 3, 5],
                "D": list("abcd"),
            }
        )
 
        result = df.set_index("C").interpolate()
        expected = df.set_index("C")
        expected.loc[3, "A"] = 3
        expected.loc[5, "B"] = 9
        tm.assert_frame_equal(result, expected)
 
    def test_interp_empty(self):
        # https://github.com/pandas-dev/pandas/issues/35598
        df = DataFrame()
        result = df.interpolate()
        assert result is not df
        expected = df
        tm.assert_frame_equal(result, expected)
 
    def test_interp_bad_method(self):
        df = DataFrame(
            {
                "A": [1, 2, np.nan, 4],
                "B": [1, 4, 9, np.nan],
                "C": [1, 2, 3, 5],
                "D": list("abcd"),
            }
        )
        msg = (
            r"method must be one of \['linear', 'time', 'index', 'values', "
            r"'nearest', 'zero', 'slinear', 'quadratic', 'cubic', "
            r"'barycentric', 'krogh', 'spline', 'polynomial', "
            r"'from_derivatives', 'piecewise_polynomial', 'pchip', 'akima', "
            r"'cubicspline'\]. Got 'not_a_method' instead."
        )
        with pytest.raises(ValueError, match=msg):
            df.interpolate(method="not_a_method")
 
    def test_interp_combo(self):
        df = DataFrame(
            {
                "A": [1.0, 2.0, np.nan, 4.0],
                "B": [1, 4, 9, np.nan],
                "C": [1, 2, 3, 5],
                "D": list("abcd"),
            }
        )
 
        result = df["A"].interpolate()
        expected = Series([1.0, 2.0, 3.0, 4.0], name="A")
        tm.assert_series_equal(result, expected)
 
        result = df["A"].interpolate(downcast="infer")
        expected = Series([1, 2, 3, 4], name="A")
        tm.assert_series_equal(result, expected)
 
    def test_interp_nan_idx(self):
        df = DataFrame({"A": [1, 2, np.nan, 4], "B": [np.nan, 2, 3, 4]})
        df = df.set_index("A")
        msg = (
            "Interpolation with NaNs in the index has not been implemented. "
            "Try filling those NaNs before interpolating."
        )
        with pytest.raises(NotImplementedError, match=msg):
            df.interpolate(method="values")
 
    @td.skip_if_no_scipy
    def test_interp_various(self):
        df = DataFrame(
            {"A": [1, 2, np.nan, 4, 5, np.nan, 7], "C": [1, 2, 3, 5, 8, 13, 21]}
        )
        df = df.set_index("C")
        expected = df.copy()
        result = df.interpolate(method="polynomial", order=1)
 
        expected.loc[3, "A"] = 2.66666667
        expected.loc[13, "A"] = 5.76923076
        tm.assert_frame_equal(result, expected)
 
        result = df.interpolate(method="cubic")
        # GH #15662.
        expected.loc[3, "A"] = 2.81547781
        expected.loc[13, "A"] = 5.52964175
        tm.assert_frame_equal(result, expected)
 
        result = df.interpolate(method="nearest")
        expected.loc[3, "A"] = 2
        expected.loc[13, "A"] = 5
        tm.assert_frame_equal(result, expected, check_dtype=False)
 
        result = df.interpolate(method="quadratic")
        expected.loc[3, "A"] = 2.82150771
        expected.loc[13, "A"] = 6.12648668
        tm.assert_frame_equal(result, expected)
 
        result = df.interpolate(method="slinear")
        expected.loc[3, "A"] = 2.66666667
        expected.loc[13, "A"] = 5.76923077
        tm.assert_frame_equal(result, expected)
 
        result = df.interpolate(method="zero")
        expected.loc[3, "A"] = 2.0
        expected.loc[13, "A"] = 5
        tm.assert_frame_equal(result, expected, check_dtype=False)
 
    @td.skip_if_no_scipy
    def test_interp_alt_scipy(self):
        df = DataFrame(
            {"A": [1, 2, np.nan, 4, 5, np.nan, 7], "C": [1, 2, 3, 5, 8, 13, 21]}
        )
        result = df.interpolate(method="barycentric")
        expected = df.copy()
        expected.loc[2, "A"] = 3
        expected.loc[5, "A"] = 6
        tm.assert_frame_equal(result, expected)
 
        result = df.interpolate(method="barycentric", downcast="infer")
        tm.assert_frame_equal(result, expected.astype(np.int64))
 
        result = df.interpolate(method="krogh")
        expectedk = df.copy()
        expectedk["A"] = expected["A"]
        tm.assert_frame_equal(result, expectedk)
 
        result = df.interpolate(method="pchip")
        expected.loc[2, "A"] = 3
        expected.loc[5, "A"] = 6.0
 
        tm.assert_frame_equal(result, expected)
 
    def test_interp_rowwise(self):
        df = DataFrame(
            {
                0: [1, 2, np.nan, 4],
                1: [2, 3, 4, np.nan],
                2: [np.nan, 4, 5, 6],
                3: [4, np.nan, 6, 7],
                4: [1, 2, 3, 4],
            }
        )
        result = df.interpolate(axis=1)
        expected = df.copy()
        expected.loc[3, 1] = 5
        expected.loc[0, 2] = 3
        expected.loc[1, 3] = 3
        expected[4] = expected[4].astype(np.float64)
        tm.assert_frame_equal(result, expected)
 
        result = df.interpolate(axis=1, method="values")
        tm.assert_frame_equal(result, expected)
 
        result = df.interpolate(axis=0)
        expected = df.interpolate()
        tm.assert_frame_equal(result, expected)
 
    @pytest.mark.parametrize(
        "axis_name, axis_number",
        [
            pytest.param("rows", 0, id="rows_0"),
            pytest.param("index", 0, id="index_0"),
            pytest.param("columns", 1, id="columns_1"),
        ],
    )
    def test_interp_axis_names(self, axis_name, axis_number):
        # GH 29132: test axis names
        data = {0: [0, np.nan, 6], 1: [1, np.nan, 7], 2: [2, 5, 8]}
 
        df = DataFrame(data, dtype=np.float64)
        result = df.interpolate(axis=axis_name, method="linear")
        expected = df.interpolate(axis=axis_number, method="linear")
        tm.assert_frame_equal(result, expected)
 
    def test_rowwise_alt(self):
        df = DataFrame(
            {
                0: [0, 0.5, 1.0, np.nan, 4, 8, np.nan, np.nan, 64],
                1: [1, 2, 3, 4, 3, 2, 1, 0, -1],
            }
        )
        df.interpolate(axis=0)
        # TODO: assert something?
 
    @pytest.mark.parametrize(
        "check_scipy", [False, pytest.param(True, marks=td.skip_if_no_scipy)]
    )
    def test_interp_leading_nans(self, check_scipy):
        df = DataFrame(
            {"A": [np.nan, np.nan, 0.5, 0.25, 0], "B": [np.nan, -3, -3.5, np.nan, -4]}
        )
        result = df.interpolate()
        expected = df.copy()
        expected.loc[3, "B"] = -3.75
        tm.assert_frame_equal(result, expected)
 
        if check_scipy:
            result = df.interpolate(method="polynomial", order=1)
            tm.assert_frame_equal(result, expected)
 
    def test_interp_raise_on_only_mixed(self, axis):
        df = DataFrame(
            {
                "A": [1, 2, np.nan, 4],
                "B": ["a", "b", "c", "d"],
                "C": [np.nan, 2, 5, 7],
                "D": [np.nan, np.nan, 9, 9],
                "E": [1, 2, 3, 4],
            }
        )
        msg = (
            "Cannot interpolate with all object-dtype columns "
            "in the DataFrame. Try setting at least one "
            "column to a numeric dtype."
        )
        with pytest.raises(TypeError, match=msg):
            df.astype("object").interpolate(axis=axis)
 
    def test_interp_raise_on_all_object_dtype(self):
        # GH 22985
        df = DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}, dtype="object")
        msg = (
            "Cannot interpolate with all object-dtype columns "
            "in the DataFrame. Try setting at least one "
            "column to a numeric dtype."
        )
        with pytest.raises(TypeError, match=msg):
            df.interpolate()
 
    def test_interp_inplace(self, using_copy_on_write):
        df = DataFrame({"a": [1.0, 2.0, np.nan, 4.0]})
        expected = DataFrame({"a": [1.0, 2.0, 3.0, 4.0]})
        expected_cow = df.copy()
        result = df.copy()
        return_value = result["a"].interpolate(inplace=True)
        assert return_value is None
        if using_copy_on_write:
            tm.assert_frame_equal(result, expected_cow)
        else:
            tm.assert_frame_equal(result, expected)
 
        result = df.copy()
        return_value = result["a"].interpolate(inplace=True, downcast="infer")
        assert return_value is None
        if using_copy_on_write:
            tm.assert_frame_equal(result, expected_cow)
        else:
            tm.assert_frame_equal(result, expected.astype("int64"))
 
    def test_interp_inplace_row(self):
        # GH 10395
        result = DataFrame(
            {"a": [1.0, 2.0, 3.0, 4.0], "b": [np.nan, 2.0, 3.0, 4.0], "c": [3, 2, 2, 2]}
        )
        expected = result.interpolate(method="linear", axis=1, inplace=False)
        return_value = result.interpolate(method="linear", axis=1, inplace=True)
        assert return_value is None
        tm.assert_frame_equal(result, expected)
 
    def test_interp_ignore_all_good(self):
        # GH
        df = DataFrame(
            {
                "A": [1, 2, np.nan, 4],
                "B": [1, 2, 3, 4],
                "C": [1.0, 2.0, np.nan, 4.0],
                "D": [1.0, 2.0, 3.0, 4.0],
            }
        )
        expected = DataFrame(
            {
                "A": np.array([1, 2, 3, 4], dtype="float64"),
                "B": np.array([1, 2, 3, 4], dtype="int64"),
                "C": np.array([1.0, 2.0, 3, 4.0], dtype="float64"),
                "D": np.array([1.0, 2.0, 3.0, 4.0], dtype="float64"),
            }
        )
 
        result = df.interpolate(downcast=None)
        tm.assert_frame_equal(result, expected)
 
        # all good
        result = df[["B", "D"]].interpolate(downcast=None)
        tm.assert_frame_equal(result, df[["B", "D"]])
 
    def test_interp_time_inplace_axis(self):
        # GH 9687
        periods = 5
        idx = date_range(start="2014-01-01", periods=periods)
        data = np.random.rand(periods, periods)
        data[data < 0.5] = np.nan
        expected = DataFrame(index=idx, columns=idx, data=data)
 
        result = expected.interpolate(axis=0, method="time")
        return_value = expected.interpolate(axis=0, method="time", inplace=True)
        assert return_value is None
        tm.assert_frame_equal(result, expected)
 
    @pytest.mark.parametrize("axis_name, axis_number", [("index", 0), ("columns", 1)])
    def test_interp_string_axis(self, axis_name, axis_number):
        # https://github.com/pandas-dev/pandas/issues/25190
        x = np.linspace(0, 100, 1000)
        y = np.sin(x)
        df = DataFrame(
            data=np.tile(y, (10, 1)), index=np.arange(10), columns=x
        ).reindex(columns=x * 1.005)
        result = df.interpolate(method="linear", axis=axis_name)
        expected = df.interpolate(method="linear", axis=axis_number)
        tm.assert_frame_equal(result, expected)
 
    @pytest.mark.parametrize("method", ["ffill", "bfill", "pad"])
    def test_interp_fillna_methods(self, request, axis, method, using_array_manager):
        # GH 12918
        if using_array_manager and axis in (1, "columns"):
            # TODO(ArrayManager) support axis=1
            td.mark_array_manager_not_yet_implemented(request)
 
        df = DataFrame(
            {
                "A": [1.0, 2.0, 3.0, 4.0, np.nan, 5.0],
                "B": [2.0, 4.0, 6.0, np.nan, 8.0, 10.0],
                "C": [3.0, 6.0, 9.0, np.nan, np.nan, 30.0],
            }
        )
        expected = df.fillna(axis=axis, method=method)
        result = df.interpolate(method=method, axis=axis)
        tm.assert_frame_equal(result, expected)